Advertisement

Application of a custom haplotype caller to analyze sequence-based data of 56 microhaplotypes

Published:September 17, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102778

      Highlights

      • A 56 multiplex assay and custom haplotype caller, Visual Microhap, facilitate MPS of microhaps for forensics.
      • A workflow to analyze MPS data of microhaps using open-source tools, STRait Razor 3.0 and Visual Microhap, is presented.
      • Web-based Visual Microhap provides four analysis options to detect SNP-based haplotypes.
      • Potential utility of the 56 microhaps panel for human identification was demonstrated in four population groups.

      Abstract

      Microhaplotypes (microhaps) are recently introduced markers that aim to complement the limitations of conventional forensic markers such as short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs). With the potential of microhaps in forensics becoming clearer through massively parallel sequencing (MPS), MPS-based studies on microhaps are being actively reported. However, simpler workflow schemes for the generation and analysis of MPS data are still required to facilitate the practical application of MPS in forensics. In this study, we developed an in-house MPS panel that simultaneously amplifies 56 microhaps and a custom haplotype caller, Visual Microhap. The developed tool works on a web browser and provides four analysis options to extract SNP-based haplotypes from sequence-based data obtained by STRait Razor 3.0. To demonstrate the utility of the MPS panel and data analysis workflow scheme, we also analyzed 56 microhaps of 286 samples from four populations (African-American, Caucasian, Hispanic, and Korean). The average effective number of alleles (Ae) for the four groups was 3.45, ranging from 1.74 to 6.98. Forensic statistical parameters showed that this microhap panel is more powerful than conventional autosomal STRs for human identification. Meanwhile, the 56-plex panel mostly comprised microhaps with high Ae; however, the four populations were grossly distinguishable from each other by cluster analysis. Consequently, the developed in-house MPS panel for 56 microhaps and the adopted workflow using open-source tools can increase the utility of microhap MPS in forensic research and practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • Haigh E.
        • Kidd J.R.
        Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics.
        Forensic Sci. Int. Genet. 2014; 12: 215-224https://doi.org/10.1016/j.fsigen.2014.06.014
        • Oldoni F.
        • Kidd K.K.
        • Podini D.
        Microhaplotypes in forensic genetics.
        Forensic Sci. Int. Genet. 2019; 38: 54-69https://doi.org/10.1016/j.fsigen.2018.09.009
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagace R.
        • Wootton S.
        • Chang J.
        Selecting microhaplotypes optimized for different purposes.
        Electrophoresis. 2018; 39: 2815-2823https://doi.org/10.1002/elps.201800092
        • Turchi C.
        • Melchionda F.
        • Pesaresi M.
        • Tagliabracci A.
        Evaluation of a microhaplotypes panel for forensic genetics using massive parallel sequencing technology.
        Forensic Sci. Int. Genet. 2019; 41: 120-127https://doi.org/10.1016/j.fsigen.2019.04.009
        • Oldoni F.
        • Bader D.
        • Fantinato C.
        • Wootton S.C.
        • Lagacé R.
        • Kidd K.K.
        • Podini D.
        A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures.
        Forensic Sci. Int. Genet. 2020; 49102367https://doi.org/10.1016/j.fsigen.2020.102367
        • Phillips C.
        • McNevin D.
        • Kidd K.K.
        • Lagace R.
        • Wootton S.
        • de la Puente M.
        • Freire-Aradas A.
        • Mosquera-Miguel A.
        • Eduardoff M.
        • Gross T.
        • Dagostino L.
        • Power D.
        • Olson S.
        • Hashiyada M.
        • Oz C.
        • Parson W.
        • Schneider P.M.
        • Lareu M.V.
        • Daniel R.
        MAPlex - a massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations.
        Forensic Sci. Int. Genet. 2019; 42: 213-226https://doi.org/10.1016/j.fsigen.2019.06.022
        • Pang J.B.
        • Rao M.
        • Chen Q.F.
        • Ji A.Q.
        • Zhang C.
        • Kang K.L.
        • Wu H.
        • Ye J.
        • Nie S.J.
        • Wang L.
        A 124-plex microhaplotype panel based on next-generation sequencing developed for forensic applications.
        Sci. Rep. 2020; 10: 1945https://doi.org/10.1038/s41598-020-58980-x
        • Bulbul O.
        • Pakstis A.J.
        • Soundararajan U.
        • Gurkan C.
        • Brissenden J.E.
        • Roscoe J.M.
        • Evsanaa B.
        • Togtokh A.
        • Paschou P.
        • Grigorenko E.L.
        • Gurwitz D.
        • Wootton S.
        • Lagace R.
        • Chang J.
        • Speed W.C.
        • Kidd K.K.
        Ancestry inference of 96 population samples using microhaplotypes.
        Int. J. Leg. Med. 2018; 132: 703-711https://doi.org/10.1007/s00414-017-1748-6
        • Gandotra N.
        • Speed W.C.
        • Qin W.
        • Tang Y.
        • Pakstis A.J.
        • Kidd K.K.
        • Scharfe C.
        Validation of novel forensic DNA markers using multiplex microhaplotype sequencing.
        Forensic Sci. Int. Genet. 2020; 47102275https://doi.org/10.1016/j.fsigen.2020.102275
        • Jin X.
        • Zhang X.
        • Shen C.
        • Liu Y.
        • Cui W.
        • Chen C.
        • Guo Y.
        • Zhu B.
        A highly polymorphic panel consisting of microhaplotypes and compound markers with the NGS and its forensic efficiency evaluations in Chinese two groups.
        Genes. 2020; 11: 1027https://doi.org/10.3390/genes11091027
        • Woerner A.E.
        • King J.L.
        • Budowle B.
        Fast STR allele identification with STRait Razor 3.0.
        Forensic Sci. Int. Genet. 2017; 30: 18-23https://doi.org/10.1016/j.fsigen.2017.05.008
        • Wendt F.R.
        • King J.L.
        • Novroski N.M.M.
        • Churchill J.D.
        • Ng J.
        • Oldt R.F.
        • McCulloh K.L.
        • Weise J.A.
        • Smith D.G.
        • Kanthaswamy S.
        • Budowle B.
        Flanking region variation of ForenSeq (TM) DNA signature prep kit STR and SNP loci in Yavapai Native Americans.
        Forensic Sci. Int. Genet. 2017; 28: 146-154https://doi.org/10.1016/j.fsigen.2017.02.014
        • King J.L.
        • Churchill J.D.
        • Novroski N.M.M.
        • Zeng X.
        • Warshauer D.H.
        • Seah L.-H.
        • Budowle B.
        Increasing the discrimination power of ancestry- and identity-informative SNP loci within the ForenSeq™ DNA Signature Prep Kit.
        Forensic Sci. Int. Genet. 2018; 36: 60-76https://doi.org/10.1016/j.fsigen.2018.06.005
        • Riman S.
        • Kiesler K.M.
        • Borsuk L.A.
        • Vallone P.M.
        Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing.
        Forensic Sci. Int. Genet. 2017; 29: 181-192https://doi.org/10.1016/j.fsigen.2017.04.005
        • Sturk-Andreaggi K.
        • Parson W.
        • Allen M.
        • Marshall C.
        Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy.
        Forensic Sci. Int. Genet. 2020; 44102205https://doi.org/10.1016/j.fsigen.2019.102205
        • Kidd K.K.
        • Speed W.C.
        • Pakstis A.J.
        • Podini D.S.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • Haigh E.
        • Soundararajan U.
        Evaluating 130 microhaplotypes across a global set of 83 populations.
        Forensic Sci. Int. Genet. 2017; 29: 29-37https://doi.org/10.1016/j.fsigen.2017.03.014
        • Kwon Y.-L.
        • Kim B.M.
        • Lee E.Y.
        • Shin K.-J.
        Massively parallel sequencing of 25 autosomal STRs including SE33 in four population groups for forensic applications.
        Sci. Rep. 2021; 11: 4701https://doi.org/10.1038/s41598-021-82814-z
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • Garimella K.
        • Altshuler D.
        • Gabriel S.
        • Daly M.
        • DePristo M.A.
        The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303https://doi.org/10.1101/gr.107524.110
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows–Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760https://doi.org/10.1093/bioinformatics/btp324
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • Fennell T.
        • Ruan J.
        • Homer N.
        • Marth G.
        • Abecasis G.
        • Durbin R.
        The sequence alignment/map format and SAMtools.
        Bioinformatics. 2009; 25: 2078-2079https://doi.org/10.1093/bioinformatics/btp352
        • Poplin R.
        • Ruano-Rubio V.
        • DePristo M.A.
        • Fennell T.J.
        • Carneiro M.O.
        • Van der Auwera G.A.
        • Kling D.E.
        • Gauthier L.D.
        • Levy-Moonshine A.
        • Roazen D.
        • Shakir K.
        • Thibault J.
        • Chandran S.
        • Whelan C.
        • Lek M.
        • Gabriel S.
        • Daly M.J.
        • Neale B.
        • MacArthur D.G.
        • Banks E.
        Scaling accurate genetic variant discovery to tens of thousands of samples.
        bioRxiv. 2018; 201178https://doi.org/10.1101/201178
        • Robinson J.T.
        • Thorvaldsdóttir H.
        • Winckler W.
        • Guttman M.
        • Lander E.S.
        • Getz G.
        • Mesirov J.P.
        Integrative genomics viewer.
        Nat. Biotechnol. 2011; 29: 24-26https://doi.org/10.1038/nbt.1754
      1. R. Kolde, pheatmap: Pretty Heatmaps 1.0.12, January 4, 2019. 〈https://cran.r-project.org/web/packages/pheatmap/index.html〉.

        • Kidd K.K.
        • Speed W.C.
        Criteria for selecting microhaplotypes: mixture detection and deconvolution.
        Invest. Genet. 2015; 6: 1https://doi.org/10.1186/s13323-014-0018-3
        • Earl D.A.
        • vonHoldt B.M.
        Structure harvester: a website and program for visualizing structure output and implementing the Evanno method.
        Conserv. Genet. Resour. 2012; 4: 359-361https://doi.org/10.1007/s12686-011-9548-7
        • Pakstis A.J.
        • Gandotra N.
        • Speed W.C.
        • Murtha M.
        • Scharfe C.
        • Kidd K.K.
        The population genetics characteristics of a 90 locus panel of microhaplotypes.
        Hum. Genet. 2021; 140: 1753-1773https://doi.org/10.1007/s00439-021-02382-0
        • Churchill J.D.
        • Novroski N.M.M.
        • King J.L.
        • Seah L.H.
        • Budowle B.
        Population and performance analyses of four major populations with Illumina’s FGx forensic genomics system.
        Forensic Sci. Int. Genet. 2017; 30: 81-92https://doi.org/10.1016/j.fsigen.2017.06.004
        • Sanchez J.J.
        • Phillips C.
        • Børsting C.
        • Balogh K.
        • Bogus M.
        • Fondevila M.
        • Harrison C.D.
        • Musgrave-Brown E.
        • Salas A.
        • Syndercombe-Court D.
        • Schneider P.M.
        • Carracedo A.
        • Morling N.
        A multiplex assay with 52 single nucleotide polymorphisms for human identification.
        Electrophoresis. 2006; 27: 1713-1724https://doi.org/10.1002/elps.200500671
        • van der Gaag K.J.
        • de Leeuw R.H.
        • Laros J.F.J.
        • den Dunnen J.T.
        • de Knijff P.
        Short hypervariable microhaplotypes: a novel set of very short high discriminating power loci without stutter artefacts.
        Forensic Sci. Int. Genet. 2018; 35: 169-175https://doi.org/10.1016/j.fsigen.2018.05.008
        • Oldoni F.
        • Yoon L.
        • Wootton S.C.
        • Lagacé R.
        • Kidd K.K.
        • Podini D.
        Population genetic data of 74 microhaplotypes in four major U.S. population groups.
        Forensic Sci. Int. Genet. 2020; 49102398https://doi.org/10.1016/j.fsigen.2020.102398