Advertisement

A comparison of likelihood ratios with and without assuming relatedness for DNA mixtures interpreted using a continuous model

Published:October 26, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102800

      Highlights

      • Correctly assuming relatedness increases likelihood ratios for true donors.
      • Ignoring relatedness is conservative in most cases.
      • Potential relatedness may be modelled probabilistically.

      Abstract

      When evaluating support for the contribution of a person of interest (POI) to a mixed DNA sample, it is generally assumed that the mixture contributors are unrelated to the POI and to each other. In practice, there may be situations where this assumption is violated, for instance if two mixture contributors are siblings. The effect on the likelihood ratio of (in)correctly assuming relatedness between mixture contributors has previously been investigated using simulation studies based on simplified models ignoring peak heights. We revisit this problem using a simulation study that applies peak height models both in the simulation and mixture interpretation part of the study. Specifically, we sample sets of mixtures comprising both related and unrelated contributors and evaluate support for the contribution of the mixture donors as well as unrelated persons with and without incorporating an assumption of relatedness. The results show, consistent with earlier studies, that including a correct assumption of relatedness increases the capacity of the probabilistic genotyping system to distinguish between mixture donors and unrelated persons. Any effect of the relatedness is found to depend strongly on the mixture ratio. We further show that the results do not change materially when a sub-population correction is applied. Finally, we suggest and discuss a likelihood ratio approach that considers relatedness between mixture contributors using a prior probability.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Buckleton J.S.
        • Bright J.-A.
        • Taylor D.
        Forensic DNA Evidence Interpretation.
        CRC Press, 2018
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Academic Press, 2011
        • Coble M.D.
        • Bright J.-A.
        Probabilistic genotyping software: an overview.
        Forensic Sci. Int. Genet. 2019; 38: 219-224https://doi.org/10.1016/j.fsigen.2018.11.009
        • Taylor D.
        • Kruijver M.
        Combining evidence across multiple mixed DNA profiles for improved resolution of a donor when a common contributor can be assumed.
        Forensic Sci. Int. Genet. 2020; 49102375https://doi.org/10.1016/j.fsigen.2020.102375
        • Slooten K.
        The comparison of DNA mixture profiles with multiple persons of interest.
        Forensic Sci. Int. Genet. 2022; 56102592https://doi.org/10.1016/j.fsigen.2021.102592
        • Bleka Ø.
        • Prieto L.
        • Gill P.
        EFMrep: An extension of EuroForMix for improved combination of STR DNA mixture profiles.
        Forensic Sci. Int. Genet. 2022; https://doi.org/10.1016/j.fsigen.2022.102771
        • Cowell R.G.
        • Lauritzen S.L.
        • Mortera J.
        Probabilistic modelling for DNA mixture analysis.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 640-642https://doi.org/10.1016/j.fsigss.2007.10.087
        • Pascali V.L.
        • Merigioli S.
        Joint Bayesian analysis of forensic mixtures.
        Forensic Sci. Int. Genet. 2012; 6: 735-748https://doi.org/10.1016/j.fsigen.2012.08.005
        • Daeid N.N.
        • Hackman L.
        • Pope S.
        • Puch-Solis R.
        Interpretation of DNA data within the context of UK forensic science—investigation.
        Emerg. Top. Life Sci. 2021; 5: 395-404https://doi.org/10.1042/ETLS20210165
        • Amankwaa A.O.
        Trends in forensic DNA database: transnational exchange of DNA data.
        Forensic Sci. Res. 2019; https://doi.org/10.1080/20961790.2019.1565651
        • Kelly H.
        • Bright J.-A.
        • Coble M.D.
        • Buckleton J.S.
        A description of the likelihood ratios in the probabilistic genotyping software STRmix™.
        Wiley Interdiscip. Rev. Forensic Sci. 2020; 2e1377https://doi.org/10.1002/wfs2.1377
        • Balding D.J.
        • Steele C.D.
        Weight-of-Evidence for Forensic DNA Profiles.
        John Wiley & Sons, 2015
        • Kruijver M.
        • Taylor D.
        • Bright J.-A.
        Evaluating DNA evidence possibly involving multiple (mixed) samples, common donors and related contributors.
        Forensic Sci. Int. Genet. 2021; 54102532https://doi.org/10.1016/j.fsigen.2021.102532
        • Kelly H.
        • Kerr Z.
        • Cheng K.
        • Kruijver M.
        • Bright J.-A.
        Developmental validation of a software implementation of a flexible framework for the assignment of likelihood ratios for forensic investigations.
        Forensic Sci. Int. Rep. 2021; 4100231https://doi.org/10.1016/j.fsir.2021.100231
        • Green P.J.
        • Mortera J.
        Inference about complex relationships using peak height data from DNA mixtures.
        J. R. Stat. Soc. Ser. C. Appl. Stat. 2021; 70: 1049-1082https://doi.org/10.1111/rssc.12498
        • Green P.J.
        • Mortera J.
        • Prieto L.
        Casework applications of probabilistic genotyping methods for DNA mixtures that allow relationships between contributors.
        Forensic Sci. Int. Genet. 2021; 52102482https://doi.org/10.1016/j.fsigen.2021.102482
        • Slooten K.
        • Caliebe A.
        Contributors are a nuisance (parameter) for DNA mixture evidence evaluation.
        Forensic Sci. Int. Genet. 2018; 37: 116-125https://doi.org/10.1016/j.fsigen.2018.05.004
        • Stafford Allen P.
        • Pugh S.N.
        • Bright J.-A.
        • Taylor D.A.
        • Curran J.M.
        • Kerr Z.
        • Buckleton J.S.
        Relaxing the assumption of unrelatedness in the numerator and denominator of likelihood ratios for DNA mixtures.
        Forensic Sci. Int. Genet. 2021; 51102434https://doi.org/10.1016/j.fsigen.2020.102434
        • Kruijver M.
        simDNAmixtures: Simulate forensic DNA mixtures.
        2022 (R package version 0.2)
        • Kruijver M.
        • Bright J.-A.
        A tool for simulating single source and mixed DNA profiles (accepted).
        Forensic Sci. Int. Genet. 2022; https://doi.org/10.1016/j.fsigen.2022.102746
        • R Core Team M.
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2021 (URL https://www.R-project.org/)
        • Moretti T.R.
        • Moreno L.I.
        • Smerick J.B.
        • Pignone M.L.
        • Hizon R.
        • Buckleton J.S.
        • Bright J.-A.
        • Onorato A.J.
        Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States.
        Forensic Sci. Int. Genet. 2016; 25: 175-181https://doi.org/10.1016/j.fsigen.2016.07.022
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2013; 7: 516-528https://doi.org/10.1016/j.fsigen.2013.05.011
        • Bright J.-A.
        • Taylor D.
        • McGovern C.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • Buckleton J.
        Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int. Genet. 2016; 23: 226-239https://doi.org/10.1016/j.fsigen.2016.05.007
        • Wickham H.
        Ggplot2: Elegant Graphics for Data Analysis.
        Springer-Verlag New York, 2016 (URL https://ggplot2.tidyverse.org)
        • Swaminathan H.
        • Grgicak C.M.
        • Medard M.
        • Lun D.S.
        NOCIt: A computational method to infer the number of contributors to DNA samples analyzed by STR genotyping.
        Forensic Sci. Int. Genet. 2015; 16: 172-180https://doi.org/10.1016/j.fsigen.2014.11.010
        • McGovern C.
        • Cheng K.
        • Kelly H.
        • Ciecko A.
        • Taylor D.
        • Buckleton J.S.
        • Bright J.-A.
        Performance of a method for weighting a range in the number of contributors in probabilistic genotyping.
        Forensic Sci. Int. Genet. 2020; 48102352https://doi.org/10.1016/j.fsigen.2020.102352