Advertisement

Characterizing the amplification of STR markers in multiplex polymerase chain displacement reaction using massively parallel sequencing

Published:October 21, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102802

      Highlights

      • We established a multiplex PCDR system containing 24 STRs.
      • The complete STR profile in the PCDR product was illustrated by MPS.
      • Characteristics of STR amplification in the PCDR context were studied in detail.
      • The opposite impact of PCDR on contraction and elongation stutters were revealed.
      • PCDR was feasible for challenging degraded DNA and DNA mixtures detection.

      Abstract

      Polymerase chain displacement reaction (PCDR) showed advantages in forensic low-template DNA analysis with improved amplification efficiency, higher allele detection capacity, and lower stutter artifact than PCR. However, characteristics of STR markers after PCDR amplification remain unclarified for the limited resolving power of capillary electrophoresis (CE). This issue can be addressed by massively parallel sequencing (MPS) technology with higher throughput and discriminability. Here, we developed a multiplex PCDR system including 24 STRs and amelogenin. In addition, a PCR reference was established for comparison. After amplification, products were subjected to PCR-free library construction and sequenced on the Illumina NovaSeq system. We implemented a sequence-matching pipeline to separate different amplicon types of PCDR products from the combination of primers. In the sensitivity test, the PCDR multiplex obtained full STR profiles with as low as 125 pg 2800M control DNA. Based on that, single-source DNA samples were tested. First, highly concordant genotypes were observed among the PCDR multiplex, the PCR reference, and CE-based STR kits. Next, read counts of different PCDR amplicon types were investigated, showing a relative abundance of 78:12:12:1 for the shortest amplicon S, the two medium amplicons M1 and M2, and the longest amplicon L. We also analyzed the stutter artifacts for distinct amplicon types, and the results revealed the reduction of N − 1 and N − 2 contraction stutters, and the increase of N + 1 and N + 2 elongation stutters in PCDR samples. Moreover, we confirmed the feasibility of PCDR for amplifying degraded DNA samples and unbalanced DNA mixtures. Compared to the previous proof of principle study, our work took a further step to characterize the complete profile of STR markers in the PCDR context. Our results suggested that the PCDR-MPS workflow is an effective approach for forensic STR analysis. Corresponding findings in this study may help the development of PCDR-based assays and probabilistic methods in future studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morling N.
        PCR in forensic genetics.
        Biochem. Soc. Trans. 2009; 37: 438-440https://doi.org/10.1042/BST0370438
        • Gill P.
        • Whitaker J.
        • Flaxman C.
        • Brown N.
        • Buckleton J.
        An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA.
        Forensic Sci. Int. 2000; 112: 17-40https://doi.org/10.1016/S0379-0738(00)00158-4
        • Harris C.L.
        • Sanchez-Vargas I.J.
        • Olson K.E.
        • Alphey L.
        • Fu G.
        Polymerase chain displacement reaction.
        Biotechniques. 2013; 54: 93-97https://doi.org/10.2144/000113951
        • Ignatov K.B.
        • Barsova E.V.
        • Fradkov A.F.
        • Blagodatskikh K.A.
        • Kramarova T.V.
        • Kramarov V.M.
        A strong strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification.
        Biotechniques. 2014; 57: 81-87https://doi.org/10.2144/000114198
        • Huang Y.
        • Chen X.
        • Li X.
        • Shu P.
        • Wang H.
        • Hou T.
        • Wang Y.
        • Song F.
        • Zhang J.
        A proof-of-principle study on implementing polymerase chain displacement reaction (PCDR) to improve forensic low-template DNA analysis.
        Forensic Sci. Int. Genet. 2022; 56https://doi.org/10.1016/j.fsigen.2021.102609
        • Ballard D.
        • Winkler-Galicki J.
        • Wesoły J.
        Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects.
        Int. J. Leg. Med. 2020; 134: 1291-1303https://doi.org/10.1007/s00414-020-02294-0
        • Kwon Y.L.
        • Kim B.M.
        • Lee E.Y.
        • Shin K.J.
        Massively parallel sequencing of 25 autosomal STRs including SE33 in four population groups for forensic applications.
        Sci. Rep. 2021; 11: 1-9https://doi.org/10.1038/s41598-021-82814-z
        • Novroski N.M.M.
        • King J.L.
        • Churchill J.D.
        • Seah L.H.
        • Budowle B.
        Characterization of genetic sequence variation of 58 STR loci in four major population groups.
        Forensic Sci. Int. Genet. 2016; 25: 214-226https://doi.org/10.1016/j.fsigen.2016.09.007
        • Li R.
        • Wu R.
        • Li H.
        • Zhang Y.
        • Peng D.
        • Wang N.
        • Shen X.
        • Wang Z.
        • Sun H.
        Characterizing stutter variants in forensic STRs with massively parallel sequencing.
        Forensic Sci. Int. Genet. 2020; 45102225https://doi.org/10.1016/j.fsigen.2019.102225
        • Woerner A.E.
        • King J.L.
        • Budowle B.
        Compound stutter in D2S1338 and D12S391.
        Forensic Sci. Int. Genet. 2019; 39: 50-56https://doi.org/10.1016/j.fsigen.2018.12.001
        • Nakahori Y.
        • Hamano K.
        • Iwaya M.
        • Nakagome Y.
        Sex identification by polymerase chain reaction using X-Y homologous primer.
        Am. J. Med. Genet. 1991; 39: 472-473https://doi.org/10.1002/ajmg.1320390420
      1. I.F. Bronner, M.A. Quail, D.J. Turner, H. Swerdlow, Improved protocols for Illumina sequencing, 2013. 〈https://doi.org/10.1002/0471142905.hg1802s79〉.

        • Chen S.
        • Zhou Y.
        • Chen Y.
        • Gu J.
        Fastp: an ultra-fast all-in-one FASTQ preprocessor.
        in: Bioinformatics. Oxford University Press, 2018: i884-i890https://doi.org/10.1093/bioinformatics/bty560
        • van der Gaag K.J.
        • de Leeuw R.H.
        • Hoogenboom J.
        • Patel J.
        • Storts D.R.
        • Laros J.F.J.
        • de Knijff P.
        Massively parallel sequencing of short tandem repeats – population data and mixture analysis results for the PowerSeq™ system.
        Forensic Sci. Int. Genet. 2016; 24: 86-96https://doi.org/10.1016/j.fsigen.2016.05.016
        • Shen W.
        • Le S.
        • Li Y.
        • Hu F.
        SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation.
        PLoS One. 2016; 11https://doi.org/10.1371/journal.pone.0163962
        • Hoogenboom J.
        • van der Gaag K.J.
        • de Leeuw R.H.
        • Sijen T.
        • de Knijff P.
        • Laros J.F.J.
        FDSTools: a software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise.
        Forensic Sci. Int. Genet. 2017; 27: 27-40https://doi.org/10.1016/j.fsigen.2016.11.007
        • Hoogenboom J.
        • Sijen T.
        • van der Gaag K.J.
        STRNaming: generating simple, informative names for sequenced STR alleles in a standardised and automated manner.
        Forensic Sci. Int. Genet. 2021; 52102473https://doi.org/10.1016/j.fsigen.2021.102473
      2. R Core Team, R: A Language and Environment for Statistical Computing, 2020. 〈https://www.r-project.org/〉.

        • Hedell R.
        • Dufva C.
        • Ansell R.
        • Mostad P.
        • Hedman J.
        Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.
        Forensic Sci. Int. Genet. 2015; 14: 61-75https://doi.org/10.1016/j.fsigen.2014.09.008
        • Marshall P.L.
        • King J.L.
        • Budowle B.
        Utility of amplification enhancers in low copy number DNA analysis.
        Int. J. Leg. Med. 2015; 129: 43-52https://doi.org/10.1007/s00414-014-1021-1
        • Dean F.B.
        • Hosono S.
        • Fang L.
        • Wu X.
        • Faruqi A.F.
        • Bray-Ward P.
        • Sun Z.
        • Zong Q.
        • Du Y.
        • Du J.
        • Driscoll M.
        • Song W.
        • Kingsmore S.F.
        • Egholm M.
        • Lasken R.S.
        Comprehensive human genome amplification using multiple displacement amplification.
        Proc. Natl. Acad. Sci. USA. 2002; 99: 5261-5266https://doi.org/10.1073/pnas.082089499
        • Chen M.
        • Zhang J.
        • Zhao J.
        • Chen T.
        • Liu Z.
        • Cheng F.
        • Fan Q.
        • Yan J.
        Comparison of CE- and MPS-based analyses of forensic markers in a single cell after whole genome amplification.
        Forensic Sci. Int. Genet. 2020; 45https://doi.org/10.1016/j.fsigen.2019.102211
        • Chen C.
        • Xing D.
        • Tan L.
        • Li H.
        • Zhou G.
        • Huang L.
        • Xie X.S.
        Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI).
        Science. 1979; 356: 189-194https://doi.org/10.1126/science.aak9787
        • Picher Á.J.
        • Budeus B.
        • Wafzig O.
        • Krüger C.
        • García-Gómez S.
        • Martínez-Jiménez M.I.
        • Díaz-Talavera A.
        • Weber D.
        • Blanco L.
        • Schneider A.
        TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol.
        Nat. Commun. 2016; 7https://doi.org/10.1038/ncomms13296
        • Gill P.
        • Curran J.
        • Elliot K.
        A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci.
        Nucleic Acids Res. 2005; 33: 632-643https://doi.org/10.1093/nar/gki205
        • Kozarewa I.
        • Ning Z.
        • Quail M.A.
        • Sanders M.J.
        • Berriman M.
        • Turner D.J.
        Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes.
        Nat. Methods. 2009; 6: 291-295https://doi.org/10.1038/nmeth.1311
        • Riman S.
        • Iyer H.
        • Borsuk L.A.
        • Vallone P.M.
        Understanding the characteristics of sequence-based single-source DNA profiles.
        Forensic Sci. Int. Genet. 2020; 44102192https://doi.org/10.1016/j.fsigen.2019.102192
        • Vilsen S.B.
        • Tvedebrink T.
        • Mogensen H.S.
        • Morling N.
        Statistical modelling of ion PGM HID STR 10-plex MPS data.
        Forensic Sci. Int. Genet. 2017; 28: 82-89https://doi.org/10.1016/j.fsigen.2017.01.017
        • Vilsen S.B.
        • Tvedebrink T.
        • Eriksen P.S.
        • Hussing C.
        • Børsting C.
        • Morling N.
        Modelling allelic drop-outs in STR sequencing data generated by MPS.
        Forensic Sci. Int. Genet. 2018; 37: 6-12https://doi.org/10.1016/j.fsigen.2018.07.017
        • Schlötterer C.
        • Tautz D.
        Slippage synthesis of simple sequence DNA.
        Nucleic Acids Res. 1992; 20: 211-215https://doi.org/10.1093/nar/20.2.211
        • Petricevic S.
        • Whitaker J.
        • Buckleton J.
        • Vintiner S.
        • Patel J.
        • Simon P.
        • Ferraby H.
        • Hermiz W.
        • Russell A.
        Validation and development of interpretation guidelines for low copy number (LCN) DNA profiling in New Zealand using the AmpFlSTR® SGM Plus™ multiplex.
        Forensic Sci. Int. Genet. 2010; 4: 305-310https://doi.org/10.1016/j.fsigen.2009.11.003
        • Fordyce S.L.
        • Mogensen H.S.
        • Børsting C.
        • Lagacé R.E.
        • Chang C.W.
        • Rajagopalan N.
        • Morling N.
        Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™.
        Forensic Sci. Int. Genet. 2015; 14: 132-140https://doi.org/10.1016/j.fsigen.2014.09.020
        • Weusten J.
        • Herbergs J.
        A stochastic model of the processes in PCR based amplification of STR DNA in forensic applications.
        Forensic Sci. Int. Genet. 2012; 6: 17-25https://doi.org/10.1016/j.fsigen.2011.01.003
        • Bleka Ø.
        • Just R.
        • Agudo M.M.
        • Gill P.
        MPSproto: an extension of EuroForMix to evaluate MPS-STR mixtures.
        Forensic Sci. Int. Genet. 2022; 61https://doi.org/10.1016/j.fsigen.2022.102781
        • Grubwieser P.
        • Mühlmann R.
        • Berger B.
        • Niederstätter H.
        • Pavlic M.
        • Parson W.
        A new “miniSTR-multiplex” displaying reduced amplicon lengths for the analysis of degraded DNA.
        Int. J. Leg. Med. 2006; 120: 115-120https://doi.org/10.1007/s00414-005-0013-6
        • Asari M.
        • Watanabe S.
        • Matsubara K.
        • Shiono H.
        • Shimizu K.
        Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA.
        Anal. Biochem. 2009; 386: 85-90https://doi.org/10.1016/j.ab.2008.11.023
        • Turchi C.
        • Melchionda F.
        • Pesaresi M.
        • Fattorini P.
        • Tagliabracci A.
        Performance of a massive parallel sequencing microhaplotypes assay on degraded DNA.
        Forensic Sci. Int. Genet. Suppl. Ser. 2019; 7: 782-783https://doi.org/10.1016/j.fsigss.2019.10.176
        • Kim E.H.
        • Lee H.Y.
        • Yang I.S.
        • Jung S.E.
        • Yang W.I.
        • Shin K.J.
        Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.
        Forensic Sci. Int. Genet. 2016; 22: 1-7https://doi.org/10.1016/j.fsigen.2016.01.001
        • Cho S.
        • Shin K.J.
        • Bae S.J.
        • Kwon Y.L.
        • Lee S.D.
        Improved STR analysis of degraded DNA from human skeletal remains through in-house MPS-STR panel.
        Electrophoresis. 2020; 41: 1600-1605https://doi.org/10.1002/elps.202000070
        • Szargut M.
        • Diepenbroek M.
        • Zielińska G.
        • Cytacka S.
        • Arciszewska J.
        • Jałowińska K.
        • Piątek J.
        • Ossowski A.
        Is MPS always the answer? Use of two PCR-based methods for Y-chromosomal haplotyping in highly and moderately degraded bone material.
        Forensic Sci. Int. Genet. 2019; 42: 181-189https://doi.org/10.1016/j.fsigen.2019.07.016
        • Bleka Ø.
        • Benschop C.C.G.
        • Storvik G.
        • Gill P.
        A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles.
        Forensic Sci. Int. Genet. 2016; 25: 85-96https://doi.org/10.1016/j.fsigen.2016.07.016
        • Slooten K.
        A top-down approach to DNA mixtures.
        Forensic Sci. Int. Genet. 2020; 46102250https://doi.org/10.1016/j.fsigen.2020.102250
        • Pfeifer C.M.
        • Klein-Unseld R.
        • Klintschar M.
        • Wiegand P.
        Comparison of different interpretation strategies for low template DNA mixtures.
        Forensic Sci. Int. Genet. 2012; 6: 716-722https://doi.org/10.1016/j.fsigen.2012.06.006
        • Walsh P.S.
        • Erlich H.A.
        • Higuchi R.
        Preferential PCR amplification of alleles: mechanisms and solutions.
        Genome Res. 1992; 1: 241-250https://doi.org/10.1101/gr.1.4.241
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        • Muharam I.
        • van Daal A.
        • John Mitchell R.
        Decreasing amplification bias associated with multiple displacement amplification and short tandem repeat genotyping.
        Anal. Biochem. 2007; 368: 222-229https://doi.org/10.1016/j.ab.2007.05.017
        • Weissensteiner T.
        • Lanchbury J.S.
        Strategy for controlling preferential amplification and avoiding false negatives in PCR typing.
        Biotechniques. 1996; 21: 1102-1108https://doi.org/10.2144/96216rr03