Advertisement

Developmental validation of STRmix™ NGS, a probabilistic genotyping tool for the interpretation of autosomal STRs from forensic profiles generated using NGS

Published:November 08, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102804

      Highlights

      • Developmental validation of probabilistic genotyping software – STRmix™ NGS.
      • Demonstrate the software’s appropriateness to interpret NGS aSTR profiles.
      • Shows that sequence-based stutter models perform better than a length-based model.
      • Compares LRs assigned using sequence-based and length-based allele frequencies.

      Abstract

      We describe the developmental validation of the probabilistic genotyping software – STRmix™ NGS – developed for the interpretation of forensic DNA profiles containing autosomal STRs generated using next generation sequencing (NGS) also known as massively parallel sequencing (MPS) technologies. Developmental validation was carried out in accordance with the Scientific Working Group on DNA Analysis Methods (SWGDAM) Guidelines for the Validation of Probabilistic Genotyping Systems and the International Society for Forensic Genetics (ISFG) recommendations and included sensitivity and specificity testing, accuracy, precision, and the interpretation of case-types samples. The results of developmental validation demonstrate the appropriateness of the software for the interpretation of profiles developed using NGS technology.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Børsting C.
        • Morling N.
        Next generation sequencing and its applications in forensic genetics.
        Forensic Sci. Int. Genet. 2015; 18: 78-89
        • de Knijff P.
        From next generation sequencing to now generation sequencing in forensics.
        Forensic Sci. Int. Genet. 2019; 38: 175-180
        • Shendure J.
        • Balasubramanian S.
        • Church G.M.
        • Gilbert W.
        • Rogers J.
        • Schloss J.A.
        • Waterston R.H.
        DNA sequencing at 40: past, present and future.
        Nature. 2017; 550: 345-353
        • Breslin K.
        • Wills B.
        • Ralf A.
        • Ventayol Garcia M.
        • Kukla-Bartoszek M.
        • Pospiech E.
        • Freire-Aradas A.
        • Xavier C.
        • Ingold S.
        • de La Puente M.
        • van der Gaag K.J.
        • Herrick N.
        • Haas C.
        • Parson W.
        • Phillips C.
        • Sijen T.
        • Branicki W.
        • Walsh S.
        • Kayser M.
        HIrisPlex-S system for eye, hair, and skin color prediction from DNA: massively parallel sequencing solutions for two common forensically used platforms.
        Forensic Sci. Int. Genet. 2019; 43102152
        • Greytak E.M.
        • Moore C.
        • Armentrout S.L.
        Genetic genealogy for cold case and active investigations.
        Forensic Sci. Int. 2019; 299: 103-113
        • Liu Y.-Y.
        • Harbison S.
        A review of bioinformatic methods for forensic DNA analyses.
        Forensic Sci. Int. Genet. 2018; 33: 117-128
        • Huszar T.I.
        • Gettings K.B.
        • Vallone P.M.
        An introductory overview of open-source and commercial software options for the analysis of forensic sequencing data.
        Genes. 2021; 12
        • King J.L.
        • Woerner A.E.
        • Mandape S.N.
        • Kapema K.B.
        • Moura-Neto R.S.
        • Silva R.
        • Budowle B.
        STRait Razor Online: an enhanced user interface to facilitate interpretation of MPS data.
        Forensic Sci. Int. Genet. 2021; 52102463
        • Woerner A.E.
        • King J.L.
        • Budowle B.
        Fast STR allele identification with STRait Razor 3.0.
        Forensic Sci. Int. Genet. 2017; 30: 18-23
        • Warshauer D.H.
        • Lin D.
        • Hari K.
        • Jain R.
        • Davis C.
        • LaRue B.
        • King J.L.
        • Budowle B.
        STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data.
        Forensic Sci. Int. Genet. 2013; 7: 409-417
      1. Verogen, ForenSeq™ Universal Analysis Software Guide. <〈https://verogen.com/wp-content/uploads/2018/08/ForenSeq-Univ-Analysis-SW-Guide-VD2018007-A.pdf〉>, 2018 (accessed 26 July 2022.).

        • Müller P.
        • Alonso A.
        • Barrio P.A.
        • Berger B.
        • Bodner M.
        • Martin P.
        • Parson W.
        Systematic evaluation of the early access applied biosystems precision ID Globalfiler mixture ID and Globalfiler NGS STR panels for the ion S5 system.
        Forensic Sci. Int. Genet. 2018; 36: 95-103
        • Anvar S.Y.
        • van der Gaag K.J.
        • van der Heijden J.W.F.
        • Veltrop M.H.A.M.
        • Vossen R.H.A.M.
        • de Leeuw R.H.
        • Breukel C.
        • Buermans H.P.J.
        • Verbeek J.S.
        • de Knijff P.
        • den Dunnen J.T.
        • Laros J.F.J.
        TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes.
        Bioinformatics. 2014; 30: 1651-1659
        • Van Neste C.
        • Vandewoestyne M.
        • Van Criekinge W.
        • Deforce D.
        • Van Nieuwerburgh F.
        My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing.
        Forensic Sci. Int. Genet. 2014; 9: 1-8
        • Liu Y.Y.
        • Welch D.
        • England R.
        • Stacey J.
        • Harbison S.
        Forensic STR allele extraction using a machine learning paradigm.
        Forensic Sci. Int. Genet. 2020; 44102194
      2. Scientific Working Group on DNA Analysis Methods (SWGDAM), Guidelines for the Validation of Probabilistic Genotyping Systems. <〈http://media.wix.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf〉>, 2015 (accessed 3 October 2016.).

        • Coble M.D.
        • Buckleton J.
        • Butler J.M.
        • Egeland T.
        • Fimmers R.
        • Gill P.
        • Gusmão L.
        • Guttman B.
        • Krawczak M.
        • Morling N.
        • Parson W.
        • Pinto N.
        • Schneider P.M.
        • Sherry S.T.
        • Willuweit S.
        • Prinz M.
        DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications.
        Forensic Sci. Int. Genet. 2016; 25: 102191-102197
      3. Forensic Science Regulator, Software Validation for DNA Mixture Interpretation, FSR-G-223 Issue 1. <〈https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/730994/G223_Mixture_software_validation_Issue1.pdf〉>, 2018 (accessed 11 September 2018.).

        • Coble M.D.
        • Bright J.-A.
        Probabilistic genotyping software: an overview.
        Forensic Sci. Int. Genet. 2019; 38: 219-224
        • Kelly H.
        • Bright J.-A.
        • Buckleton J.S.
        • Curran J.M.
        A comparison of statistical models for the analysis of complex forensic DNA profiles.
        Sci. Justice. 2014; 54: 66-70
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2013; 7: 516-528
        • Bright J.-A.
        • Taylor D.
        • McGovern C.E.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • Buckleton J.S.
        Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int. Genet. 2016; 23: 226-239
        • Parson W.
        • Ballard D.
        • Budowle B.
        • Butler J.M.
        • Gettings K.B.
        • Gill P.
        • Gusmão L.
        • Hares D.R.
        • Irwin J.A.
        • King J.L.
        • Knijff Pd
        • Morling N.
        • Prinz M.
        • Schneider P.M.
        • Neste C.V.
        • Willuweit S.
        • Phillips C.
        Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.
        Forensic Sci. Int. Genet. 2016; 22: 54-63
        • Gettings K.B.
        • Ballard D.
        • Bodner M.
        • Borsuk L.A.
        • King J.L.
        • Parson W.
        • Phillips C.
        Report from the STRAND Working Group on the 2019 STR sequence nomenclature meeting.
        Forensic Sci. Int. Genet. 2019; 43102165
        • Young B.
        • Faris T.
        • Armogida L.
        A nomenclature for sequence-based forensic DNA analysis.
        Forensic Sci. Int. Genet. 2019; 42: 14-20
        • Just R.S.
        • Irwin J.A.
        Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results.
        Forensic Sci. Int. Genet. 2018; 34: 197-205
        • Woerner A.
        • King J.
        • Budowle B.
        Flanking variation influences rates of stutter in simple repeats.
        Genes. 2017; 8: 329
      4. J. Bregu, Investigation of baseline noise: establishing an RFU threshold for forensic DNA anlaysis, Biomedical Forensic Sciences, Boston University, 2009.

        • Mönich U.J.
        • Duffy K.
        • Médard M.
        • Cadambe V.
        • Alfonse L.E.
        • Grgicak C.
        Probabilistic characterisation of baseline noise in STR profiles.
        Forensic Sci. Int. Genet. 2015; 19: 107-122
        • Young B.
        • Faris T.
        • Armogida L.
        Levenshtein distance as a measure of accuracy and precision in forensic PCR-MPS methods.
        Forensic Sci. Int. Genet. 2021; 55102594
        • Bleka Ø.
        • Just R.
        • Le J.
        • Gill P.
        An examination of STR nomenclatures, filters and models for MPS mixture interpretation.
        Forensic Sci. Int. Genet. 2020; 48102319
        • Young B.
        • King J.L.
        • Budowle B.
        • Armogida L.
        A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.
        PLoS One. 2017; 12e0178005
        • Vilsen S.B.
        • Tvedebrink T.
        • Mogensen H.S.
        • Morling N.
        Modelling noise in second generation sequencing forensic genetics STR data using a one-inflated (zero-truncated) negative binomial model.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e416-e417
      5. K. Cheng, The Application of Modern Statistical Methods to the Advance of Probabilistic Genotyping, Statistics, The University of Auckland, 2022.

        • Fan H.
        • Chu J.-Y.
        A brief review of short tandem repeat mutation.
        Genom. Proteom. Bioinform. 2007; 5: 7-14
        • Kalafut T.
        • Schuerman C.
        • Sutton J.
        • Faris T.
        • Armogida L.
        • Bright J.-A.
        • Buckleton J.
        • Taylor D.
        Implementation and validation of an improved allele specific stutter filtering method for electropherogram interpretation.
        Forensic Sci. Int. Genet. 2018; 35: 50-56
        • Brookes C.
        • Bright J.-A.
        • Harbison S.
        • Buckleton J.
        Characterising stutter in forensic STR multiplexes.
        Forensic Sci. Int. Genet. 2012; 6: 58-63
        • Taylor D.
        • Bright J.-A.
        • McGovern C.
        • Hefford C.
        • Kalafut T.
        • Buckleton J.
        Validating multiplexes for use in conjunction with modern interpretation strategies.
        Forensic Sci. Int. Genet. 2016; 20: 6-19
        • Cheng K.
        • Lin M.-H.
        • Moreno L.
        • Skillman J.
        • Hickey S.
        • Cuenca D.
        • Hudlow W.R.
        • Just R.
        • Bright J.-A.
        • Buckleton J.
        • Curran J.M.
        Modeling allelic analyte signals for aSTRs in NGS DNA profiles.
        J. Forensic Sci. 2021; 66: 1234-1245
        • Vilsen S.B.
        • Tvedebrink T.
        • Eriksen P.S.
        • Bøsting C.
        • Hussing C.
        • Mogensen H.S.
        • Morling N.
        Stutter analysis of complex STR MPS data.
        Forensic Sci. Int. Genet. 2018; 35: 107-112
        • Agudo M.M.
        • Aanes H.
        • Roseth A.
        • Albert M.
        • Gill P.
        • Bleka Ø.
        A comprehensive characterization of MPS-STR stutter artefacts.
        Forensic Sci. Int. Genet. 2022; 102728
        • Bright J.-A.
        • Taylor D.
        • Curran J.M.
        • Buckleton J.S.
        Developing allelic and stutter peak height models for a continuous method of DNA interpretation.
        Forensic Sci. Int. Genet. 2013; 7: 296-304
        • D’Angelo O.
        • Vandepoele A.C.W.
        • Adelman J.
        • Marciano M.A.
        Assessing non-LUS stutter in DNA sequence data.
        Forensic Sci. Int. Genet. 2022; 59102706
        • Riman S.
        • Iyer H.
        • Borsuk L.A.
        • Vallone P.M.
        Understanding the characteristics of sequence-based single-source DNA profiles.
        Forensic Sci. Int. Genet. 2020; 44102192
        • Bright J.-A.
        • Taylor D.
        • Curran J.M.
        • Buckleton J.S.
        Degradation of forensic DNA profiles.
        Aust. J. Forensic Sci. 2013; 45: 445-449
        • Puch-Solis R.
        A dropin peak height model.
        Forensic Sci. Int. Genet. 2014; 11: 80-84
        • Russell L.
        • Cooper S.
        • Wivell R.
        • Kerr Z.
        • Taylor D.
        • Buckleton J.
        • Bright J.-A.
        A guide to results and diagnostics within a STRmix™ report.
        WIREs Forensic Sci. 2019; 1e1354
        • Kelly H.
        • Bright J.-A.
        • Coble M.D.
        • Buckleton J.S.
        A description of the likelihood ratios in the probabilistic genotyping software STRmix™.
        WIREs Forensic Sci. 2020; 2e1377
        • Triggs C.M.
        • Curran J.M.
        The sensitivity of the Bayesian HPD method to the choice of prior.
        Sci. Justice. 2006; 46: 169-178
        • Balding D.J.
        • Nichols R.A.
        DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands.
        Forensic Sci. Int. 1994; 64: 125-140
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The ‘factor of two’ issue in mixed DNA profiles.
        J. Theor. Biol. 2014; 363: 300-306
        • Gill P.
        • Hicks T.
        • Butler J.M.
        • Connolly E.
        • Gusmão L.
        • Kokshoorn B.
        • Morling N.
        • van Oorschot R.A.H.
        • Parson W.
        • Prinz M.
        • Schneider P.M.
        • Sijen T.
        • Taylor D.
        DNA commission of the International society for forensic genetics: assessing the value of forensic biological evidence - guidelines highlighting the importance of propositions: Part I: evaluation of DNA profiling comparisons given (sub-) source propositions.
        Forensic Sci. Int. Genet. 2018; 36: 189-202
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        Considering relatives when assessing the evidential strength of mixed DNA profiles.
        Forensic Sci. Int. Genet. 2014; 13: 259-263
        • Gettings K.B.
        • Borsuk L.A.
        • Steffen C.R.
        • Kiesler K.M.
        • Vallone P.M.
        Sequence-based U.S. population data for 27 autosomal STR loci.
        Forensic Sci. Int. Genet. 2018; 37: 106-115
        • Gettings K.B.
        • Borsuk L.A.
        • Ballard D.
        • Bodner M.
        • Budowle B.
        • Devesse L.
        • King J.
        • Parson W.
        • Phillips C.
        • Vallone P.M.
        STRSeq: a catalog of sequence diversity at human identification Short Tandem Repeat loci.
        Forensic Sci. Int. Genet. 2017; 31: 111-117
        • Taylor D.
        • Buckleton J.
        • Bright J.-A.
        Factors affecting peak height variability for short tandem repeat data.
        Forensic Sci. Int. Genet. 2016; 21: 126-133
      6. Verogen, ForenSeq D.N.A. Signature Prep Kit Reference Guide VD2018005 Rev. C, 2020.

        • Cheng K.
        • Skillman J.
        • Hickey S.
        • Just R.
        • Moreno L.
        • Bright J.-A.
        • Kelly H.
        • Lin M.-H.
        • Curran J.M.
        • Buckleton J.
        Variability and additivity of read counts for aSTRs in NGS DNA profiles.
        Forensic Sci. Int. Genet. 2020; 48102351
        • Just R.S.
        • Moreno L.I.
        • Smerick J.B.
        • Irwin J.A.
        Performance and concordance of the ForenSeq™ system for autosomal and Y chromosome short tandem repeat sequencing of reference-type specimens.
        Forensic Sci. Int. Genet. 2017; 28: 1-9
      7. Verogen, ForenSeq MainstAY Kit Datasheet, 2021.

        • Cheng K.
        • Skillman J.
        • Hickey S.
        • Just R.
        • Moreno L.
        • Bright J.A.
        • Kelly H.
        • Lin M.H.
        • Curran J.M.
        • Buckleton J.
        Variability and additivity of read counts for aSTRs in NGS DNA profiles.
        Forensic Sci. Int. Genet. 2020; 48102351
        • Taylor D.
        Using continuous DNA interpretation methods to revisit likelihood ratio behaviour.
        Forensic Sci. Int. Genet. 2014; 11: 144-153
        • Bright J.-A.
        • Richards R.
        • Kruijver M.
        • Kelly H.
        • McGovern C.
        • Magee A.
        • McWhorter A.
        • Ciecko A.
        • Peck B.
        • Baumgartner C.
        • Buettner C.
        • McWilliams S.
        • McKenna C.
        • Gallacher C.
        • Mallinder B.
        • Wright D.
        • Johnson D.
        • Catella D.
        • Lien E.
        • O’Connor C.
        • Duncan G.
        • Bundy J.
        • Echard J.
        • Lowe J.
        • Stewart J.
        • Corrado K.
        • Gentile S.
        • Kaplan M.
        • Hassler M.
        • McDonald N.
        • Hulme P.
        • Oefelein R.H.
        • Montpetit S.
        • Strong M.
        • Noël S.
        • Malsom S.
        • Myers S.
        • Welti S.
        • Moretti T.
        • McMahon T.
        • Grill T.
        • Kalafut T.
        • Greer-Ritzheimer M.
        • Beamer V.
        • Taylor D.A.
        • Buckleton J.S.
        Internal validation of STRmix™ – a multi laboratory response to PCAST.
        Forensic Sci. Int. Genet. 2018; 34: 11-24
        • Moretti T.R.
        • Just R.S.
        • Kehl S.C.
        • Willis L.E.
        • Buckleton J.S.
        • Bright J.-A.
        • Taylor D.A.
        • Onorato A.J.
        Internal validation of STRmix for the interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2017; 29: 126-144
      8. K. Gettings, Forensic DNA Open Dataset, National Institute of Standards and Technology, 2020. https://doi.org/10.18434/M32157, (accessed 2021-12-02).

        • Gettings K.B.
        • Borsuk L.A.
        • Steffen C.R.
        • Kiesler K.M.
        • Vallone P.M.
        Sequence-based U.S. population data for 27 autosomal STR loci.
        Forensic Sci. Int. Genet. 2018; 37: 106-115
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        • Curran J.
        An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations.
        Forensic Sci. Int. Genet. 2014; 11: 56-63