Highlights
- •Tools that enable forensic human identification at the point-of-need have the potential to expedite investigations.
- •Forensic microfluidic technologies have unique advantages and practical limitations.
- •The research and development of automated methods to mimic forensic workflows have resulted in few commercial systems.
- •The integration of existing microfluidic platforms is discussed and opportunity zones for future innovation are proposed.
Abstract
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Forensic Science International: GeneticsReferences
- Fabrication and applications of microfluidic devices: a review.IJMS. 2021; 22: 2011https://doi.org/10.3390/ijms22042011
- Microfluidic devices for forensic dna analysis: a review.Biosensors. 2016; 6: 41https://doi.org/10.3390/bios6030041
- Developmental validation of the ANDE™ rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching.Forensic Sci. Int.: Genet. 2019; 40: 120-130https://doi.org/10.1016/j.fsigen.2019.02.016
- Evaluation of a rapid DNA process with the RapidHIT® ID system using a specialized cartridge for extracted and quantified human DNA.Forensic Sci. Int.: Genet. 2018; 34: 116-127https://doi.org/10.1016/j.fsigen.2018.02.010
- Managing performance in the forensic sciences: expectations in light of limited budgets.Forensic Sci. Policy Manag.: Int. J. 2011; 2: 36-43https://doi.org/10.1080/19409044.2011.564271
- Practical solutions to cognitive and human factor challenges in forensic science.Forensic Sci. Policy Manag.: Int. J. 2013; 4: 105-113https://doi.org/10.1080/19409044.2014.901437
Future of Forensic DNA Testing: Predictions of the Research and Development Working Group, National Institute of Justice, 2000. 〈https://nij.ojp.gov/library/publications/future-forensic-dna-testing-predictions-research-and-development-working-group〉.
- Interpol review of forensic biology and forensic DNA typing 2016-2019.Forensic Sci. Int.: Synerg. 2020; 2: 352-367https://doi.org/10.1016/j.fsisyn.2019.12.002
- Advanced Topics in Forensic DNA Typing: Methodology.Elsevier/Academic Press,, Walthan, MA2012
- Rapid DNA for crime scene use: Enhancements and data needed to consider use on forensic evidence for State and National DNA Databasing – An agreed position statement by ENFSI, SWGDAM and the Rapid DNA Crime Scene Technology Advancement Task Group.Forensic Sci. Int.: Genet. 2020; 48102349https://doi.org/10.1016/j.fsigen.2020.102349
- Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences.Chem. 2017; 2: 201-223https://doi.org/10.1016/j.chempr.2017.01.009
- Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.Chem. Soc. Rev. 2010; 39: 1153https://doi.org/10.1039/b820557b
- Vienna Covid-19 Diagnostics Initiative (VCDI), A. Pauli, J. Brennecke, A rapid, highly sensitive and open-access SARS-CoV-2 detection assay for laboratory and home testing.Mol. Biol. 2020; https://doi.org/10.1101/2020.06.23.166397
- Microfluidics: on the slope of enlightenment.Anal. Chem. 2009; 81: 4169-4173https://doi.org/10.1021/ac900638w
- The hype cycle model: a review and future directions.Technol. Forecast. Soc. Change. 2016; 108: 28-41https://doi.org/10.1016/j.techfore.2016.04.005
- Planar chips technology for miniaturization and integration of separation techniques into monitoring systems.J. Chromatogr. A. 1992; 593: 253-258https://doi.org/10.1016/0021-9673(92)80293-4
- µ-TAS: Miniaturized total chemical analysis systems.in: Van den Berg A. Bergveld P. Micro Total Analysis Systems. Springer, Netherlands, Dordrecht1995: 5-27
- The origins and the future of microfluidics.Nature. 2006; 442: 368-373https://doi.org/10.1038/nature05058
- Acoustic microfluidics.Annu. Rev. Anal. Chem. 2020; 13: 17-43https://doi.org/10.1146/annurev-anchem-090919-102205
- Centrifugal microfluidic platforms: advanced unit operations and applications.Chem. Soc. Rev. 2015; 44: 6187-6229https://doi.org/10.1039/C4CS00371C
- A portable plug-and-play syringe pump using passive valves for microfluidic applications.Sens. Actuators B: Chem. 2020; 304127331https://doi.org/10.1016/j.snb.2019.127331
- Rapid prototyping of microfluidic systems in poly(dimethylsiloxane.Anal. Chem. 1998; 70: 4974-4984https://doi.org/10.1021/ac980656z
- Thermoplastic microfluidic devices and their applications in protein and DNA analysis.Analyst. 2011; 136: 1288https://doi.org/10.1039/c0an00969e
- Biomedical microfluidic devices by using low-cost fabrication techniques: a review.J. Biomech. 2016; 49: 2280-2292https://doi.org/10.1016/j.jbiomech.2015.11.031
- Landers J.P. Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques. 3rd ed.,. CRC Press, Boca Raton2008
- Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis.Anal. Chem. 2002; 74: 5076-5083https://doi.org/10.1021/ac020236g
- Monolithic microfabricated valves and pumps by multilayer soft lithography.Science. 2000; 288: 113-116https://doi.org/10.1126/science.288.5463.113
- Development and multiplexed control of latching pneumatic valves using microfluidic logical structures.Lab Chip. 2006; 6: 623https://doi.org/10.1039/b518362f
- Microfluidic large-scale integration.Science. 2002; 298: 580-584https://doi.org/10.1126/science.1076996
Laboratory Division Biometrics Analysis Section, Guide to All Things Rapid DNA, U. S. Department of Justice Federal Bureau of Investigation Science and Technology Branch, 2022. 〈http://www.lsp.org/pdf/FBI_Guide_to_All_Things_Rapid_DNA_01_27_2022.pdf〉.
Quality Assurance Standards for Forensic DNA Testing Laboratories, Federal Bureau of Investigation, 2011. 〈https://ucr.fbi.gov/lab/biometric-analysis/codis/quality-assurance-standards-for-forensic-dna-testing-laboratories〉.
James F. Sensenbrenner Jr., Rapid DNA Act of 2017, 2017. 〈https://www.congress.gov/bill/115th-congress/house-bill/510〉.
Non-CODIS Rapid DNA Considerations and Best Practices for Law Enforcement Use, Federal Bureau of Investigation, Non-CODIS Rpaid DNA Best Practices/Outreach and Courtroom Considerrations Task Group, 2019. 〈https://le.fbi.gov/file-repository/non-codis-rapid-dna-best-practices-092419.pdf/view〉.
- Microfluidic diagnostics: time for industry standards.Expert Rev. Med. Devices. 2009; 6: 211-213https://doi.org/10.1586/erd.09.11
- Proceedings of the first workshop on standards for microfluidics.J. Res. Natl. Inst. Stan. 2019; 124124001https://doi.org/10.6028/jres.124.001
- Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.Lab Chip. 2021; 21: 9-21https://doi.org/10.1039/D0LC00963F
- Microfluidic sample preparation: cell lysis and nucleic acid purification.Integr. Biol. 2009; 1: 574https://doi.org/10.1039/b905844c
- Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings.Analyst. 2007; 132: 1193https://doi.org/10.1039/b705672a
- Purification of nucleic acids in microfluidic devices.Anal. Chem. 2008; 80: 6472-6479https://doi.org/10.1021/ac8014998
- Recent trends and developments in forensic DNA extraction.WIREs Forensic Sci. 2021; 3https://doi.org/10.1002/wfs2.1395
- The 2018 California wildfires: integration of rapid DNA to dramatically accelerate victim identification.J. Forensic Sci. 2020; 65: 791-799https://doi.org/10.1111/1556-4029.14284
- Developmental validation of the ANDE 6C system for rapid DNA analysis of forensic casework and DVI samples.J. Forensic Sci. 2020; 65: 1056-1071https://doi.org/10.1111/1556-4029.14286
- Individual identification using the RapidHIT™ ID system for forensic samples.Leg. Med. 2020; 47101776https://doi.org/10.1016/j.legalmed.2020.101776
- Solid phase extraction on microfluidic devices.J. Micro Sep. 2000; 12: 93-97https://doi.org/10.1002/(SICI)1520-667X(2000)12:2<93::AID-MCS5>3.0.CO;2-P
- Analytical approaches to differential extraction for sexual assault evidence.Anal. Chim. Acta. 2020; (S0003267020307972)https://doi.org/10.1016/j.aca.2020.07.059
- Differential DNA extraction of challenging simulated sexual-assault samples: a Swiss collaborative study.Invest. Genet. 2011; 2: 11https://doi.org/10.1186/2041-2223-2-11
- A novel on-chip method for differential extraction of sperm in forensic cases.Adv. Sci. 2018; 5: 1800121https://doi.org/10.1002/advs.201800121
- Separation of sperm and epithelial cells in a microfabricated device: potential application to forensic analysis of sexual assault evidence.Anal. Chem. 2005; 77: 742-749https://doi.org/10.1021/ac0486239
- Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis.Biomicrofluidics. 2015; 9044127https://doi.org/10.1063/1.4928453
- Acoustic differential extraction for forensic analysis of sexual assault evidence.Anal. Chem. 2009; 81: 6089-6095https://doi.org/10.1021/ac900439b
- Acoustic trapping of sperm cells from mock sexual assault samples.Forensic Sci. Int.: Genet. 2019; 41: 42-49https://doi.org/10.1016/j.fsigen.2019.03.012
- Optical tweezers as an effective tool for spermatozoa isolation from mixed forensic samples.PLoS ONE. 2019; 14e0211810https://doi.org/10.1371/journal.pone.0211810
- Enhanced DNA mixture deconvolution of sexual offense samples using the DEPArray™ system.Forensic Sci. Int.: Genet. 2018; 34: 265-276https://doi.org/10.1016/j.fsigen.2018.03.001
- Advances in polymerase chain reaction on microfluidic chips.Anal. Chem. 2005; 77: 3887-3894https://doi.org/10.1021/ac050756m
- PCR microfluidic devices for DNA amplification.Biotechnol. Adv. 2006; 24: 243-284https://doi.org/10.1016/j.biotechadv.2005.10.002
- Microfluidic DNA amplification—a review.Anal. Chim. Acta. 2009; 638: 115-125https://doi.org/10.1016/j.aca.2009.02.038
- Nucleic acid amplification using microfluidic systems.Lab Chip. 2013; 13: 1225https://doi.org/10.1039/c3lc41097h
- Microfluidic-based nucleic acid amplification systems in microbiology.Micromachines. 2019; 10: 408https://doi.org/10.3390/mi10060408
- Polymerase chain reaction in microfluidic devices.Lab Chip. 2016; 16: 3866-3884https://doi.org/10.1039/C6LC00984K
- Advances in continuous-flow based microfluidic PCR devices—a review.Eng. Res. Express. 2020; 2042001https://doi.org/10.1088/2631-8695/abd287
- Integrated microfluidic systems with sample preparation and nucleic acid amplification.Lab Chip. 2019; 19: 2769-2785https://doi.org/10.1039/C9LC00389D
- Rapid cycle DNA amplification: time and temperature optimization.Biotechniques. 1991; 10: 76-83
- Extreme PCR: efficient and specific DNA amplification in 15–60 seconds.Clin. Chem. 2015; 61: 145-153https://doi.org/10.1373/clinchem.2014.228304
- Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds.Anal. Biochem. 2001; 291: 124-132https://doi.org/10.1006/abio.2000.4974
- Ultra-rapid real-time microfluidic RT-PCR instrument for nucleic acid analysis.Lab Chip. 2022; (10.1039.D2LC00495J)https://doi.org/10.1039/D2LC00495J
- Rapid PCR of STR markers: applications to human identification.Forensic Sci. Int.: Genet. 2015; 18: 90-99https://doi.org/10.1016/j.fsigen.2015.04.008
- A review of heating and temperature control in microfluidic systems: techniques and applications.Diagnostics. 2013; 3: 33-67https://doi.org/10.3390/diagnostics3010033
- Fully integrated, fully automated generation of short tandem repeat profiles.Invest. Genet. 2013; 4: 16https://doi.org/10.1186/2041-2223-4-16
- Microchip electrophoresis for fluorescence-based measurement of polynucleic acids: recent developments.Anal. Chem. 2021; 93: 367-387https://doi.org/10.1021/acs.analchem.0c04596
- High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor.Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 574-579https://doi.org/10.1073/pnas.012608699
- Forensic DNA analysis on microfluidic devices: a review.J. Forensic Sci. 2007; 52: 784-799https://doi.org/10.1111/j.1556-4029.2007.00468.x
- Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile.Anal. Chem. 2010; 82: 6991-6999https://doi.org/10.1021/ac101355r
- An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis.Lab Chip. 2014; 14: 4415-4425https://doi.org/10.1039/C4LC00685B
- DNA goes to court.Nat. Biotechnol. 2012; 30: 1047-1053https://doi.org/10.1038/nbt.2408
- DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.Anal. Chem. 2014; 86: 8192-8199https://doi.org/10.1021/ac501666b
- A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability.Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 19272-19277https://doi.org/10.1073/pnas.0604663103
- Concordance study between the ParaDNA ® Intelligence Test, a Rapid DNA profiling assay, and a conventional STR typing kit (AmpFlSTR ® SGM Plus ®.Forensic Sci. Int.: Genet. 2015; 16: 48-51https://doi.org/10.1016/j.fsigen.2014.12.006
- Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification.Lab Chip. 2011; 11: 1041https://doi.org/10.1039/c0lc00533a
- Rapid multi-locus sequence typing using microfluidic biochips.PLoS ONE. 2010; 5e10595https://doi.org/10.1371/journal.pone.0010595
- Developmental validation of the GlobalFiler® express kit, a 24-marker STR assay, on the RapidHIT® System.Forensic Sci. Int.: Genet. 2014; 13: 247-258https://doi.org/10.1016/j.fsigen.2014.08.011
- Internal validation of the RapidHIT ® ID system.Forensic Sci. Int.: Genet. 2017; 31: 180-188https://doi.org/10.1016/j.fsigen.2017.09.011
- Results of the 2018 rapid DNA maturity assessment.J. Forensic Sci. 2020; 65: 953-959https://doi.org/10.1111/1556-4029.14267
Scientific Working Group on DNA Analysis Methods Position Statement on Rapid DNA Analysis, Scientific Working Group DNA Analysis Methods (SWGDAM), 2017. 〈https://docs.wixstatic.com/ugd/4344b0_f84df0465a2243218757fac1a1ccffea.pdf〉.
ASCLD Position Statement, American Society of Crime Laboratory Directors (ASCLD), 2017. 〈https://www.ascld.org/wp-content/uploads/2017/11/ASCLD-Position-Statement-RAPID-DNA.pdf〉.
NDAA Position Statement on Use of Rapid DNA Technology, National District Attorneys Association, 2018. 〈https://dps.alaska.gov/getmedia/fb933229–8e52–4cf8–8fe0-cb72d5e039e3/NDAA-Statement-on-Use-of-Rapid-DNA-Technology-2018.pdf〉.
- Khan R. Dhand C. Sanghi S.K. Shabi T.S. Mishra A.B.P. Advanced microfluidics based point-of-care diagnostics: a bridge between microfluidics and biomedical applications. First edition. CRC Press, Taylor & Francis Group, Boca Raton2022
- Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection.Microchim. Acta. 2012; 176: 251-269https://doi.org/10.1007/s00604-011-0705-1
- Rapid thermal cycling and PCR kinetics.in: PCR Applications. Elsevier, 1999: 211-229
- Interdisciplinary Research: Process and Theory. Fourth edition.,. SAGE,, Los Angeles2021
- Commercialization of microfluidic devices.Trends Biotechnol. 2014; 32: 347-350https://doi.org/10.1016/j.tibtech.2014.04.010
- Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care.Biosens. Bioelectron. 2021; 177112952https://doi.org/10.1016/j.bios.2020.112952
- Macro-to-micro interfaces for microfluidic devices.Lab Chip. 2004; 4: 526https://doi.org/10.1039/b410720a
- Decision support for using mobile Rapid DNA analysis at the crime scene.Sci. Justice. 2019; 59: 29-45https://doi.org/10.1016/j.scijus.2018.05.003
- Efficiency and the cost-effective delivery of forensic science services: insourcing, outsourcing, and privatization.Forensic Sci. Policy Manag.: Int. J. 2012; 3: 62-69https://doi.org/10.1080/19409044.2012.734546
- Comparative analysis of ANDE 6C rapid DNA analysis system and traditional methods.Genes. 2020; 11: 582https://doi.org/10.3390/genes11050582
M. Dolan, ‘Rapid DNA’ promises breakthroughs in solving crimes. So why does it face a backlash?, Los Angeles Times. (2019). 〈https://www.latimes.com/california/story/2019–09-24/rapid-dna-forensics-crime-police〉.
- On the added value of forensic science and grand innovation challenges for the forensic community.Sci. Justice. 2014; 54: 170-179https://doi.org/10.1016/j.scijus.2013.09.003
- Complexity in forensic science.Forensic Sci. Policy Manag.: Int. J. 2010; 1: 192-198https://doi.org/10.1080/19409041003698454
- Hot vs. cold cases: examining time to clearance for homicides using NIBRS data.Justice Res. Policy. 2007; 9: 87-112https://doi.org/10.3818/JRP.9.2.2007.87
- Objective data on DNA success rates can aid the selection process of crime samples for analysis by rapid mobile DNA technologies.Forensic Sci. Int. 2016; 264: 28-33https://doi.org/10.1016/j.forsciint.2016.03.020
- Detection of microRNAs in DNA extractions for forensic biological source identification.J. Forensic Sci. 2019; 64: 1823-1830https://doi.org/10.1111/1556-4029.14070
- RNA based approaches for body fluid identification in forensic science.WIREs Forensic Sci. 2021; 3https://doi.org/10.1002/wfs2.1407
- Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers.Forensic Sci. Int.: Genet. 2015; 18: 21-32https://doi.org/10.1016/j.fsigen.2014.11.015
- mRNA Profiling for body fluid identification by multiplex quantitative RT-PCR.J. Forensic Sci. 2007; 0 (070917231752009-???)https://doi.org/10.1111/j.1556-4029.2007.00550.x
- Body fluid identification using a targeted mRNA massively parallel sequencing approach – results of a EUROFORGEN/EDNAP collaborative exercise.Forensic Sci. Int.: Genet. 2018; 34: 105-115https://doi.org/10.1016/j.fsigen.2018.01.002
T.R. Layne, R.L. Nouwairi, R. Fleming, H. Blair, J.P. Landers, Rapid Microchip Electrophoretic Separation of Novel Tran-scriptomic Body Fluid Markers for Forensic Fluid Profiling, Micromachines. (n.d.).
- Impact of the human microbiome in forensic sciences: a systematic review.Appl. Environ. Microbiol. 2020; 86 (e01451-20)https://doi.org/10.1128/AEM.01451-20
- Integrating the microbiome as a resource in the forensics toolkit.Forensic Sci. Int.: Genet. 2017; 30: 141-147https://doi.org/10.1016/j.fsigen.2017.06.008
- Application of microbiome in forensics.Genom., Proteom. Bioinforma. 2022; (S1672022922000961)https://doi.org/10.1016/j.gpb.2022.07.007
- Forensic DNA Phenotyping: predicting human appearance from crime scene material for investigative purposes.Forensic Sci. Int.: Genet. 2015; 18: 33-48https://doi.org/10.1016/j.fsigen.2015.02.003
- The use of forensic DNA phenotyping in predicting appearance and biogeographic ancestry.Dtsch. Aerzteblatt Online. 2019; https://doi.org/10.3238/arztebl.2019.0873
- From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence.Genome Biol. 2017; 18: 238https://doi.org/10.1186/s13059-017-1373-1