Advertisement
Research Article| Volume 63, 102826, March 2023

Download started.

Ok

Forty years of research and development on forensic genetics: A bibliometric analysis

Published:January 03, 2023DOI:https://doi.org/10.1016/j.fsigen.2023.102826

      Highlights

      • This study reviews the extant literature in the domain of forensic genetics and analyzes the global research productivity.
      • Since its introduction in the late 1970 s, the importance of forensic genetics literature has significantly increased.
      • The first article in the field of forensic genetics was published in 1977.
      • Starting from 2006, there has been a considerable increase in the yearly number of publications on forensic genetics.
      • USA, China, Spain, Germany and the United Kingdom were found to be the most productive countries.

      Abstract

      The current study aims to investigate the research publication trends in the field of forensic genetics using Bibliometric analysis. An extensive search of the Scopus database was conducted to identify scholarly articles on forensic genetics published between 1977 and 2022, and a data set comprising 2945 articles was obtained. The analysis was carried out using VOSviewer, RStudio, MS Excel and MS Access to investigate the annual publication trend, most productive journals, organizations/authors/countries, authorship and citation patterns, most cited documents/articles and co-occurrence of keywords. The results revealed the first article in the field of forensic genetics was published in 1977. By the end of 1999, only 15 articles were published. Since then, there has been a considerable increase in the yearly number of publications and post-2006, there were more than 100 yearly published articles. USA, China, Spain, Germany and United Kingdom were found to be the most productive countries. Among various organizations, the Institute of Legal Medicine, Innsbruck Medical University, Austria was found to be the most productive organization. In terms of the number of publications and citations, Morling N. was found to be the most prolific author. The highest number of articles were published in Forensic Science International: Genetics, contributing about 34% of the total articles published in different sources/journals. The document with the highest number of citations was “HOMER N, 2008, PLOS GENET”, with a total of 750 citations. The most frequent keywords were forensic genetics and forensic science, followed by STR, population genetics, DNA, mt-DNA and DNA-typing. The results also revealed that there had been collaborative research among countries, organizations and authors, which helps in the exchange of ideas across disciplines, developing new skills, getting access to financial resources and generating quality results.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Butler J.M.
        The future of forensic DNA analysis.
        Philos. Trans. R. Soc. B Biol. Sci. 2015; 370: 20140252https://doi.org/10.1098/rstb.2014.0252
        • Ferreira S.T.G.
        • Paula K.A.
        • Maia F.A.
        • Svidizinski A.E.
        • Amaral M.R.
        • Diniz S.A.
        • Siqueira M.E.
        • Moraes A.V.
        The use of DNA database of biological evidence from sexual assaults in criminal investigations: a successful experience in Brasília, Brazil.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e595-e597https://doi.org/10.1016/j.fsigss.2015.09.235
        • Panneerchelvam S.
        • Norazmi M.N.
        Forensic DNA profiling and database.
        Malays. J. Med. Sci. MJMS. 2003; 10: 20-26
        • Zsolt P.ádár
        Forensic DNA Technological Advancements as an Emerging Perspective on Medico-Legal Autopsy: A Mini Review, in: Petra Zenke (Ed.).
        Post Mortem Exam. Autopsy, IntechOpen, Rijeka. 2018https://doi.org/10.5772/intechopen.72851
        • Maguire C.N.
        • McCallum L.A.
        • Storey C.
        • Whitaker J.P.
        Familial searching: a specialist forensic DNA profiling service utilising the National DNA Database® to identify unknown offenders via their relatives - the UK experience.
        Forensic Sci. Int. Genet. 2014; 8: 1-9https://doi.org/10.1016/j.fsigen.2013.07.004
        • Kayser M.
        • De Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192
        • Phillips C.
        Forensic genetic analysis of bio-geographical ancestry.
        Forensic Sci. Int. Genet. 2015; 18: 49-65https://doi.org/10.1016/j.fsigen.2015.05.012
        • Børsting C.
        • Morling N.
        Next generation sequencing and its applications in forensic genetics.
        Forensic Sci. Int. Genet. 2015; 18: 78-89https://doi.org/10.1016/j.fsigen.2015.02.002
        • Haddrill P.R.
        Developments in forensic DNA analysis.
        Emerg. Top. Life Sci. 2021; 5: 381-393https://doi.org/10.1042/ETLS20200304
      1. N.R.C. (US) C. on D.T. in F. Science, DNA Typing: Statistical Basis for Interpretation, National Academies Press (US), 1992. https://www.ncbi.nlm.nih.gov/books/NBK234541/ (accessed August 8, 2022).

        • Wyner N.
        • Barash M.
        • McNevin D.
        Forensic autosomal short tandem repeats and their potential association with phenotype.
        Front. Genet. 2020; 11 (https://www.frontiersin.org/articles/10.3389/fgene.2020.00884 (accessed August 8, 2022))
        • Sobrino B.
        • Carracedo A.
        SNP Typing in Forensic Genetics.
        in: Carracedo A. Forensic DNA Typing Protoc. Humana Press, Totowa, NJ2005: 107-126https://doi.org/10.1385/1-59259-867-6:107
        • Kayser M.
        Forensic use of Y-chromosome DNA: a general overview.
        Hum. Genet. 2017; 136: 621-635https://doi.org/10.1007/s00439-017-1776-9
        • Amorim A.
        • Fernandes T.
        • Taveira N.
        Mitochondrial DNA in human identification: a review.
        PeerJ. 2019; 7e7314https://doi.org/10.7717/peerj.7314
        • Jackson P.J.
        • Hugh-Jones M.E.
        • Adair D.M.
        • Green G.
        • Hill K.K.
        • Kuske C.R.
        • Grinberg L.M.
        • Abramova F.A.
        • Keim P.
        PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: The presence of multiple Bacillus anthracis strains in different victims.
        Proc. Natl. Acad. Sci. 1998; 95: 1224-1229https://doi.org/10.1073/pnas.95.3.1224
        • Yoon C.K.
        Botanical witness for the prosecution.
        Science. 1993; 260: 894-895https://doi.org/10.1126/science.8493521
        • AYANOĞLU F.
        • ELÇİN A.
        • ELÇİN Y.
        Bioethical issues in genome editing by CRISPR-Cas9 technology.
        Turk. J. Biol. 2020; 44: 110-120https://doi.org/10.3906/biy-1912-52
        • Wani A.K.
        • Akhtar N.
        • Singh R.
        • Prakash A.
        • Raza S.H.A.
        • Cavalu S.
        • Chopra C.
        • Madkour M.
        • Elolimy A.
        • Hashem N.M.
        Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in animals.
        Vet. Res. Commun. 2022; https://doi.org/10.1007/s11259-022-09967-8
        • Mir T. ul G.
        • Wani A.K.
        • Akhtar N.
        • Shukla S.
        CRISPR/Cas9: regulations and challenges for law enforcement to combat its dual-use.
        Forensic Sci. Int. 2022; 334111274https://doi.org/10.1016/j.forsciint.2022.111274
      2. I. of M. (US) C. on A.G.Risks, L.B. Andrews, J.E. Fullarton, N.A. Holtzman, A.G. Motulsky, Social,Legal, and Ethical Implications of Genetic Testing, National Academies Press(US), 1994. https://www.ncbi.nlm.nih.gov/books/NBK236044/ (Accessed August 8,2022).

        • Barlow-Stewartand K.
        • Burnett L.
        Ethical considerations in the Use of DNA for the diagnosis of diseases.
        Clin. Biochem. Rev. 2006; 27: 53-61
        • Munir R.
        • Abbas R.Z.
        • Arshed N.
        DNA profiling and databasing: An analysis of issues and challenges in the criminal justice system of Pakistan.
        Med. Sci. Law. 2021; 61: 27-33https://doi.org/10.1177/0025802420964318
        • Gamero J.J.
        • Romero J.-L.
        • Peralta J.-L.
        • Carvalho M.
        • Corte-Real F.
        Spanish public awareness regarding DNA profile databases in forensic genetics: What types of DNA profiles should be included?.
        J. Med. Ethics. 2007; 33: 598-604https://doi.org/10.1136/jme.2006.016998
        • Roman-Santos C.
        Concerns associated with expanding DNA databases.
        Hastings Sci. Technol. Law J. 2010; 2: 267
        • Kaye D.H.
        • Smith M.E.
        DNA identification databases: legality, legitimacy, and the case for population-wide coverage.
        Wis. Law Rev. 2003; 2003: 413
        • Hallinger P.
        Surfacing a hidden literature: a systematic review of research on educational leadership and management in Africa.
        Educ. Manag. Adm. Lead. 2018; 46: 362-384https://doi.org/10.1177/1741143217694895
        • Madadin M.
        • Siddique N.
        • Waris A.
        • Khan M.A.
        • Albarbari H.S.
        • Atreya A.
        • Sabri I.
        • Owaidah S.F.
        • Menezes R.G.
        Research trends in forensic anthropology: a bibliometric analysis.
        J. Forensic Leg. Med. 2022; 86102305https://doi.org/10.1016/j.jflm.2022.102305
        • Gokhale A.
        • Mulay P.
        • Pramod D.
        • Kulkarni R.
        A bibliometric analysis of digital image forensics.
        Sci. Technol. Libr. 2020; 39: 96-113https://doi.org/10.1080/0194262X.2020.1714529
        • Jeong Y.
        • Woo E.J.
        • Lee S.
        Bibliometric analysis on the trend of the computed tomography (CT)-related studies in the field of forensic science.
        Appl. Sci. 2020; 10: 8133https://doi.org/10.3390/app10228133
        • Homer N.
        • Szelinger S.
        • Redman M.
        • Duggan D.
        • Tembe W.
        • Muehling J.
        • Pearson J.V.
        • Stephan D.A.
        • Nelson S.F.
        • Craig D.W.
        Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.
        PLoS Genet. 2008; 4https://doi.org/10.1371/journal.pgen.1000167
        • Maricic T.
        • Whitten M.
        • Pääbo S.
        Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.
        PLoS ONE. 2010; 5https://doi.org/10.1371/journal.pone.0014004
        • Gusmão L.
        • Butler J.M.
        • Carracedo A.
        • Gill P.
        • Kayser M.
        • Mayr W.R.
        • Morling N.
        • Prinz M.
        • Roewer L.
        • Tyler-Smith C.
        • Schneider P.M.
        DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis.
        Forensic Sci. Int. 2006; 157: 187-197https://doi.org/10.1016/j.forsciint.2005.04.002
        • Parson W.
        • Dür A.
        EMPOP-A forensic mtDNA database.
        Forensic Sci. Int. Genet. 2007; 1: 88-92https://doi.org/10.1016/j.fsigen.2007.01.018
        • Willuweit S.
        • Roewer L.
        Y chromosome haplotype reference database (YHRD): update.
        Forensic Sci. Int. Genet. 2007; 1: 83-87https://doi.org/10.1016/j.fsigen.2007.01.017
        • Phillips C.
        • Salas A.
        • Sánchez J.J.
        • Fondevila M.
        • Gómez-Tato A.
        • Álvarez-Dios J.
        • Calaza M.
        • de Cal M.C.
        • Ballard D.
        • Lareu M.V.
        • Carracedo A.
        Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs.
        Forensic Sci. Int. Genet. 2007; 1: 273-280https://doi.org/10.1016/j.fsigen.2007.06.008
        • Gill P.
        • Brenner C.H.
        • Buckleton J.S.
        • Carracedo A.
        • Krawczak M.
        • Mayr W.R.
        • Morling N.
        • Prinz M.
        • Schneider P.M.
        • Weir B.S.
        DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures.
        Forensic Sci. Int. 2006; 160: 90-101https://doi.org/10.1016/j.forsciint.2006.04.009
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • Kosiniak-Kamysz A.
        • Branicki W.
        • Kayser M.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115https://doi.org/10.1016/j.fsigen.2012.07.005
        • Walsh S.
        • Liu F.
        • Ballantyne K.N.
        • Van Oven M.
        • Lao O.
        • Kayser M.
        IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
        Forensic Sci. Int. Genet. 2011; 5: 170-180https://doi.org/10.1016/j.fsigen.2010.02.004
        • Loreille O.M.
        • Diegoli T.M.
        • Irwin J.A.
        • Coble M.D.
        • Parsons T.J.
        High efficiency DNA extraction from bone by total demineralisation.
        Forensic Sci. Int. Genet. 2007; 1: 191-195https://doi.org/10.1016/j.fsigen.2007.02.006
        • Kayser M.
        Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48https://doi.org/10.1016/j.fsigen.2015.02.003
        • Pechal J.L.
        • Crippen T.L.
        • Benbow M.E.
        • Tarone A.M.
        • Dowd S.
        • Tomberlin J.K.
        The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing.
        Int. J. Leg. Med. 2014; 128: 193-205https://doi.org/10.1007/s00414-013-0872-1
        • Dror I.E.
        • Hampikian G.
        Subjectivity and bias in forensic DNA mixture interpretation.
        Sci. Justice. 2011; 51: 204-208https://doi.org/10.1016/j.scijus.2011.08.004
        • Parson W.
        • Gusmão L.
        • Hares D.R.
        • Irwin J.A.
        • Mayr W.R.
        • Morling N.
        • Pokorak E.
        • Prinz M.
        • Salas A.
        • Schneider P.M.
        • Parsons T.J.
        DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.
        Forensic Sci. Int. Genet. 2014; 13: 134-142https://doi.org/10.1016/j.fsigen.2014.07.010
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2013; 7: 516-528https://doi.org/10.1016/j.fsigen.2013.05.011
        • Ballantyne K.N.
        • Keerl V.
        • Wollstein A.
        • Choi Y.
        • Zuniga S.B.
        • Ralf A.
        • Vermeulen M.
        • De Knijff P.
        • Kayser M.
        A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages.
        Forensic Sci. Int. Genet. 2012; 6: 208-218https://doi.org/10.1016/j.fsigen.2011.04.017
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Grigorenko E.L.
        • Kajuna S.L.B.
        • Karoma N.J.
        • Kungulilo S.
        • Kim J.-J.
        • Lu R.-B.
        • Odunsi A.
        • Okonofua F.
        • Parnas J.
        • Schulz L.O.
        • Zhukova O.V.
        • Kidd J.R.
        Developing a SNP panel for forensic identification of individuals.
        Forensic Sci. Int. 2006; 164: 20-32https://doi.org/10.1016/j.forsciint.2005.11.017
        • Purps J.
        • Siegert S.
        • Willuweit S.
        • Nagy M.
        • Alves C.
        • Salazar R.
        • Angustia S.M.T.
        • Santos L.H.
        • Anslinger K.
        • Bayer B.
        • Ayub Q.
        • Wei W.
        • Xue Y.
        • Tyler-Smith C.
        • Bafalluy M.B.
        • Martínez-Jarreta B.
        • Egyed B.
        • Balitzki B.
        • Tschumi S.
        • Ballard D.
        • Court D.S.
        • Barrantes X.
        • Bäßler G.
        • Wiest T.
        • Berger B.
        • Niederstätter H.
        • Parson W.
        • Davis C.
        • Budowle B.
        • Burri H.
        • Borer U.
        • Koller C.
        • Carvalho E.F.
        • Domingues P.M.
        • Chamoun W.T.
        • Coble M.D.
        • Hill C.R.
        • Corach D.
        • Caputo M.
        • D’Amato M.E.
        • Davison S.
        • Decorte R.
        • Larmuseau M.H.D.
        • Ottoni C.
        • Rickards O.
        • Lu D.
        • Jiang C.
        • Dobosz T.
        • Jonkisz A.
        • Frank W.E.
        • Furac I.
        • Gehrig C.
        • Castella V.
        • Grskovic B.
        • Haas C.
        • Wobst J.
        • Hadzic G.
        • Drobnic K.
        • Honda K.
        • Hou Y.
        • Zhou D.
        • Li Y.
        • Hu S.
        • Chen S.
        • Immel U.-D.
        • Lessig R.
        • Jakovski Z.
        • Ilievska T.
        • Klann A.E.
        • García C.C.
        • De Knijff P.
        • Kraaijenbrink T.
        • Kondili A.
        • Miniati P.
        • Vouropoulou M.
        • Kovacevic L.
        • Marjanovic D.
        • Lindner I.
        • Mansour I.
        • Al-Azem M.
        • Andari A.E.
        • Marino M.
        • Furfuro S.
        • Locarno L.
        • Martín P.
        • Luque G.M.
        • Alonso A.
        • Miranda L.S.
        • Moreira H.
        • Mizuno N.
        • Iwashima Y.
        • Neto R.S.M.
        • Nogueira T.L.S.
        • Silva R.
        • Nastainczyk-Wulf M.
        • Edelmann J.
        • Kohl M.
        • Nie S.
        • Wang X.
        • Cheng B.
        • Núñez C.
        • Pancorbo M.M.D.
        • Olofsson J.K.
        • Morling N.
        • Onofri V.
        • Tagliabracci A.
        • Pamjav H.
        • Volgyi A.
        • Barany G.
        • Pawlowski R.
        • Maciejewska A.
        • Pelotti S.
        • Pepinski W.
        • Abreu-Glowacka M.
        • Phillips C.
        • Cárdenas J.
        • Rey-Gonzalez D.
        • Salas A.
        • Brisighelli F.
        • Capelli C.
        • Toscanini U.
        • Piccinini A.
        • Piglionica M.
        • Baldassarra S.L.
        • Ploski R.
        • Konarzewska M.
        • Jastrzebska E.
        • Robino C.
        • Sajantila A.
        • Palo J.U.
        • Guevara E.
        • Salvador J.
        • Ungria M.C.D.
        • Rodriguez J.J.R.
        • Schmidt U.
        • Schlauderer N.
        • Saukko P.
        • Schneider P.M.
        • Sirker M.
        • Shin K.-J.
        • Oh Y.N.
        • Skitsa I.
        • Ampati A.
        • Smith T.-G.
        • Calvit L.S.D.
        • Stenzl V.
        • Capal T.
        • Tillmar A.
        • Nilsson H.
        • Turrina S.
        • De Leo D.
        • Verzeletti A.
        • Cortellini V.
        • Wetton J.H.
        • Gwynne G.M.
        • Jobling M.A.
        • Whittle M.R.
        • Sumita D.R.
        • Wolańska-Nowak P.
        • Yong R.Y.Y.
        • Krawczak M.
        • Nothnagel M.
        • Roewer L.
        A global analysis of Y-chromosomal haplotype diversity for 23 STR loci.
        Forensic Sci. Int. Genet. 2014; 12: 12-23https://doi.org/10.1016/j.fsigen.2014.04.008
        • Kayser M.
        • Schneider P.M.
        DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
        Forensic Sci. Int. Genet. 2009; 3: 154-161https://doi.org/10.1016/j.fsigen.2009.01.012