Advertisement
Research Article| Volume 63, 102829, March 2023

Download started.

Ok

Kinship analysis of skeletal remains from the Middle Ages

Published:January 16, 2023DOI:https://doi.org/10.1016/j.fsigen.2023.102829

      Highlights

      • Kinship determination is important for understanding social habits and structure in past human communities.
      • Complete or nearly complete autosomal STR and Y-STR profiles were obtained from the archaeological human skeletal remains.
      • Kinship analysis revealed siblingship between two males with high KP value of 99.99996 %.
      • Identical haplotypes and Y-haplogroup prediction suggested that all male individuals are related by patrilineal descent.
      • Employing additional markers is crucial for getting a comprehensive information about close and distant relatives, and ancestry.

      Abstract

      Medieval cemeteries Klisa-Guca Gora, Alihodze and Glavica-Han Bila located in the Travnik area (Travnik, Bosnia and Herzegovina) were archaeologically examined in the period 2011–2014, revealing human skeletal remains of 11 individuals in total. Archaeological skeletal samples, previously deposited in Travnik Homeland Museum (Travnik, Bosnia and Herzegovina) were subjected to genetic analysis. The aim of this research was to test familiar relationship of 11 individuals excavated from three medieval cemeteries and to predict Y-haplogroup for male individuals. In order to perform molecular-genetic characterisation of collected human skeletal remains, two systems of genetic markers were analysed: autosomal and Y-STR loci. Complete or partial data obtained by autosomal STR typing of 11 individuals were subjected to kinship analysis. Male sex was determined in eight samples out of 11. Direct relatives of the "brother-brother" type were detected in one case with high kinship probability (KP) value of 99.99996 %. Complete or nearly complete and usable Y-STR profiles were obtained for six out of eight male individuals. The presence of identical haplotypes at Y-STR loci and results of Y-haplogroup prediction suggest that all male individuals share the same paternal lineage and belong to J2a haplogroup. Overall, this study emphasises the usefulness, efficiency and sensitivity of STR markers in the molecular-genetic characterisation of old skeletal remains as well as the importance of employing additional markers like Y-STRs in archaeogenetic studies, besides traditionally used autosomal STR markers, in order to get a comprehensive information about close and distant relatives, and ancestry.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Latham K.E.
        • Miller J.J.
        DNA recovery and analysis from skeletal material in modern forensic contexts.
        Forensic Sci. Res. 2018; 4: 51-59https://doi.org/10.1080/20961790.2018.1515594
        • Jusic B.
        • Dzehverovic M M.
        • Pilav A.
        • Terzic S.
        • Zukic S.
        • Bujak E.
        • Cakar J.
        Sex determination of medieval skeletal remains: evaluation of anthropological, odontological and genetic methods.
        J. Bioanthropol. 2022; 1https://doi.org/10.54062/jb.2.1.2
        • Higgins D.
        • Austin J.J.
        Teeth as a source of DNA for forensic identification of human remains: a review.
        Sci. Justice. 2013; 53: 433-441https://doi.org/10.1016/j.scijus.2013.06.001
        • Latham K.E.
        • Madonna M.E.
        • Lai Hipp J.
        DNA survivability in skeletal remains.
        in: Pokines J.T. L’Abbé E.N. Symes S.A. Manual of Forensic Taphonomy. second ed. CRC Press, Boca Raton, Florida2022: 555-579
        • Alaeddini R.
        • Walsh S.J.
        • Abbas A.
        Forensic implications of genetic analyses from degraded DNA–a review.
        Forensic Sci. Int. Genet. 2010; 4: 148-157https://doi.org/10.1016/j.fsigen.2009.09.007
        • Zupanic Pajnic I.
        Molecular genetic aspects of ancient DNA analyses.
        Slov. Med. J. 2020; 89: 171-189https://doi.org/10.6016/ZdravVestn.2923
        • Pinhasi R.
        • Fernandes D.
        • Sirak K.
        • Novak M.
        • Connell S.
        • Alpaslan-Roodenberg S.
        • Gerritsen F.
        • Moiseyev V.
        • Gromov A.
        • Raczky P.
        • Anders A.
        • Pietrusewsky M.
        • Rollefson G.
        • Jovanovic M.
        • Trinhhoang H.
        • Bar-Oz G.
        • Oxenham M.
        • Matsumura H.
        • Hofreiter M.
        Optimal ancient DNA yields from the inner ear part of the human petrous bone.
        PLoS One. 2015; 10e0129102https://doi.org/10.1371/journal.pone.0129102
        • Pinhasi R.
        • Fernandes D.M.
        • Sirak K.
        • Cheronet O.
        Isolating the human cochlea to generate bone powder for ancient DNA analysis.
        Nat. Protoc. 2019; 14: 1194-1205https://doi.org/10.1038/s41596-019-0137-7
        • Gamba C.
        • Jones E.
        • Teasdale M.
        • McLaughlin R.L.
        • Gonzalez-Fortes G.
        • Mattiangeli V.
        • Domboróczki L.
        • Kővári I.
        • Pap I.
        • Anders A.
        • Whittle A.
        • Dani J.
        • Raczky P.
        • Higham T.F.G.
        • Hofreiter M.
        • Bradley D.G.
        • Pinhasi R.
        Genome flux and stasis in a five millennium transect of European prehistory.
        Nat. Commun. 2014; 5: 5257https://doi.org/10.1038/ncomms6257
        • Kulstein G.
        • Hadrys T.
        • Wiegand P.
        As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.
        Int. J. Leg. Med. 2018; 132: 13-24https://doi.org/10.1007/s00414-017-1653-z
        • Suligoj A.
        • Mesesnel S.
        • Leskovar T.
        • Podovsovnik E.
        • Zupanic Pajnic I.
        Comparison of DNA preservation between adult and non-adult ancient skeletons.
        Int. J. Leg. Med. 2022; 136: 1521-1539https://doi.org/10.1007/s00414-022-02881-3
        • Harney É.
        • Cheronet O.
        • Fernandes D.M.
        • Sirak K.
        • Mah M.
        • Bernardos R.
        • Adamski N.
        • Broomandkhoshbacht N.
        • Callan K.
        • Lawson A.M.
        • Oppenheimer J.
        • Stewardson K.
        • Zalzala F.
        • Anders A.
        • Candilio F.
        • Constantinescu M.
        • Coppa A.
        • Ciobanu I.
        • Dani J.
        • Gallina Z.
        • Genchi F.
        • Gyöngyvér Nagy E.
        • Hajdu T.
        • Hellebrandt M.
        • Horváth A.
        • Király Á.
        • Kiss K.
        • Kolozsi B.
        • Kovács P.
        • Köhler K.
        • Lucci M.
        • Pap I.
        • Popovici S.
        • Raczky P.
        • Simalcsik A.
        • Szeniczey T.
        • Vasilyev S.
        • Virag C.
        • Rohland N.
        • Reich D.
        • Pinhasi R.
        A minimally destructive protocol for DNA extraction from ancient teeth.
        Genome Res. 2021; 31: 472-483https://doi.org/10.1101/gr.267534.120
        • Johnston E.
        • Stephenson M.
        DNA profiling success rates from degraded skeletal remains in guatemala.
        J. Forensic Sci. 2016; 61: 898-902https://doi.org/10.1111/1556-4029.13087
        • Parsons T.J.
        • Huel R.
        • Bajunovic Z.
        • Rizvic A.
        Large scale DNA identification: the ICMP experience.
        Forensic Sci. Int. Genet. 2019; 38: 236-244https://doi.org/10.1016/j.fsigen.2018.11.008
        • Varrathyarom P.
        • Sathirapatya T.
        • Worrapitirungsi W.
        • Vongpaisarnsin K.
        DNA extraction of burnt bone and teeth casework samples using bead-beating homogenization technique.
        Forensic Sci. Int. Genet. Suppl. Ser. 2023; 8: 156-158https://doi.org/10.1016/j.fsigss.2022.10.019
        • Damgaard P.
        • Margaryan A.
        • Schroeder H.
        • Orlando L.
        • Willerslev E.
        • Allentoft M.
        Improving access to endogenous DNA in ancient bones and teeth.
        Sci. Rep. 2015; 5: 11184https://doi.org/10.1038/srep11184
        • Hansen H.B.
        • Damgaard P.B.
        • Margaryan A.
        • Stenderup J.
        • Lynnerup N.
        • Willerslev E.
        • Allentoft M.E.
        Comparing ancient DNA preservation in petrous bone and tooth cementum.
        PLoS One. 2017; 12e0170940https://doi.org/10.1371/journal.pone.0170940
        • Betancor E.
        • Fregel R.
        • Almeida M.
        • Suárez N.
        • Pestano J.
        DNA typing for the identification of eight victims of Spanish Civil War reprisals in the Canary Islands: the case of "the Fuencaliente thirteen" mass graves (Fuencaliente, La Palma).
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: 301-302https://doi.org/10.1016/j.fsigss.2011.09.013
        • Sosa C.
        • Baeta M.
        • Núñez C.
        • Casalod Y.
        • Luna A.
        • Martínez-Jarreta B.
        Nuclear DNA typing from ancient teeth.
        Am. J. Forensic Med. Pathol. 2012; 33: 211-214https://doi.org/10.1097/PAF.0b013e3181fe3401
        • Marjanovic D.
        • Metjahic N.
        • Cakar J.
        • Dzehverovic M.
        • Doğan S.
        • Serkan
        • Feric Bojic E.
        • Dzijan S.
        • Skaro V.
        • Projic P.
        • Madzar T.
        • Rod E.
        • Primorac D.
        Identification of human remains from the Second World War mass graves uncovered in Bosnia and Herzegovina.
        Croat. Med. J. 2015; 56: 257-262https://doi.org/10.3325/cmj.2015.56.257
        • Forshaw R.
        The two brothers: an enlightening study of ancient Egyptian teeth.
        Br. Dent. J. 2019; 226: 518-524https://doi.org/10.1038/s41415-019-0149-2
        • Mansour H.
        • Krebs O.
        • Sperhake J.P.
        • Augustin C.
        • Koehne T.
        • Amling M.
        • Püschel K.
        Cementum as a source of DNA in challenging forensic cases.
        J. Forensic Leg. Med. 2018; 54: 76-81https://doi.org/10.1016/j.jflm.2017.12.015
        • Dutra Correa H.S.
        • Cortellini V.
        • Brescia G.
        • Verzeletti A.
        Human identification through DNA analysis of restored postmortem teeth.
        Forensic Sci. Int. Genet. 2020; 47102302https://doi.org/10.1016/j.fsigen.2020.102302
        • Agostini V.
        DNA analysis of the last Brazilian unknown soldier's remains buried in Pistoia (Italy).
        Forensic Sci. Res. 2020; 5: 336-340https://doi.org/10.1080/20961790.2020.1713453
        • Kumar N.
        • Sharma A.
        Human identification through DNA analysis of teeth using powder-free method – a case study.
        J. Forensic Odontostomatol. 2021; 1: 45-52
        • Chierto E.
        • Cena G.
        • Mann R.
        • Mattutino G.
        • Nuzzolese E.
        • Robino C.
        Sweet tooth: DNA profiling of a cranium from an isolated retained root fragment.
        J. Forensic Sci. 2021; 66: 1973-1979https://doi.org/10.1111/1556-4029.14748
        • Gamba C.
        • Fernández E.
        • Tirado M.
        • Pastor F.
        • Arroyo-Pardo E.
        Brief communication: ancient nuclear DNA and kinship analysis: the case of a medieval burial in San Esteban Church in Cuellar (Segovia, Central Spain).
        Am. J. Phys. Anthropol. 2011; 144: 485-491https://doi.org/10.1002/ajpa.21451
        • Palomo-Díez S.
        • Esparza Arroyo Á.
        • Tirado-Vizcaíno M.
        • Velasco Vázquez J.
        • López-Parra A.M.
        • Gomes C.
        • Baeza-Richer C.
        • Arroyo-Pardo E.
        Kinship analysis and allelic dropout: a forensic approach on an archaeological case.
        Ann. Hum. Biol. 2018; 45: 365-368https://doi.org/10.1080/03014460.2018.1484159
        • Alonso A.
        • Andelinovic S.
        • Martín P.
        • Sutlovic D.
        • Erceg I.
        • Huffine E.
        • de Simón L.F.
        • Albarrán C.
        • Definis-Gojanovic M.
        • Fernández-Rodriguez A.
        • García P.
        • Drmic I.
        • Rezic B.
        • Kuret S.
        • Sancho M.
        • Primorac D.
        DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples.
        Croat. Med. J. 2001; 42: 260-266
        • Davoren J.
        • Vanek D.
        • Konjhodzic R.
        • Crews J.
        • Huffine E.
        • Parsons T.J.
        Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves.
        Croat. Med. J. 2007; 48: 478-485
        • Zupanic Pajnic I.
        • Gornjak Pogorelc B.
        • Balazic J.
        Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia.
        Int. J. Leg. Med. 2010; 124: 307-317https://doi.org/10.1007/s00414-010-0431-y
        • Schwark T.
        • Heinrich A.
        • Preusse-Prange A.
        • von Wurmb-Schwark N.
        Reliable genetic identification of burnt human remains.
        Forensic Sci. Int. Genet. 2011; 5: 393-399https://doi.org/10.1016/j.fsigen.2010.08.008
        • Gerstenberger J.
        • Hummel S.
        • Schultes T.
        • Häck B.
        • Herrmann B.
        Reconstruction of a historical genealogy by means of STR analysis and Y-haplotyping of ancient DNA.
        Eur. J. Hum. Genet. 1999; 7: 469-477https://doi.org/10.1038/sj.ejhg.5200322
        • Pilli E.
        • Boccone S.
        • Agostino A.
        • Virgili A.
        • D'Errico G.
        • Lari M.
        • Rapone C.
        • Barni F.
        • Moggi Cecchi J.
        • Berti A.
        • Caramelli D.
        From unknown to known: identification of the remains at the mausoleum of fosse Ardeatine.
        Sci. Justice. 2018; 58: 469-478https://doi.org/10.1016/j.scijus.2018.05.007
        • Pajnic I.
        • Obal M.
        • Zupanc T.
        Identifying victims of the largest Second World War family massacre in Slovenia.
        Forensic Sci. Int. 2019; 306110056https://doi.org/10.1016/j.forsciint.2019.110056
        • Dzehverovic M.
        • Cakar J.
        • Bujak E.
        • Pilav A.
        • Ramic J.
        • Kalajdzic A.
        • Pojskic N.
        DNA analysis of skeletal remains of an important historical figure from the period of mediaeval Bosnia.
        Int. J. Osteoarchaeol. 2021; 31: 1-9https://doi.org/10.1002/oa.3002
        • King T.E.
        • Gonzalez Fortes G.
        • Balaresque P.
        • Thomas M.G.
        • Balding D.
        • Maisano Delser P.
        • Neumann R.
        • Parson W.
        • Knapp M.
        • Walsh S.
        • Tonasso L.
        • Holt J.
        • Kayser M.
        • Appleby J.
        • Forster P.
        • Ekserdjian D.
        • Hofreiter M.
        • Schürer K.
        Identification of the remains of King Richard III.
        Nat. Commun. 2014; 5: 5631https://doi.org/10.1038/ncomms6631
        • Gill P.
        • Ivanov P.L.
        • Kimpton C.
        • Piercy R.
        • Benson N.
        • Tully G.
        • Evett I.
        • Hagelberg E.
        • Sullivan K.
        Identification of the remains of the Romanov family by DNA analysis.
        Nat. Genet. 1994; 6: 130-135https://doi.org/10.1038/ng0294-130
        • Coble M.D.
        • Loreille O.M.
        • Wadhams M.J.
        • Edson S.M.
        • Maynard K.
        • Meyer C.E.
        • Niederstätter H.
        • Berger C.
        • Berger B.
        • Falsetti A.B.
        • Gill P.
        • Parson W.
        • Finelli L.N.
        Mystery solved: the identification of the two missing Romanov children using DNA analysis.
        PLoS One. 2009; 4e4838https://doi.org/10.1371/journal.pone.0004838
      1. Applied Biosystems, User Guide – Quantifiler® Duo DNA Quantification Kit, Life Technologies Corporation, Carlsbad, California, USA. 4387746, Revised 2014.

      2. Promega, Technical Manual – PowerPlex® Fusion System for Use on the Applied Biosystems® Genetic Analyzers, Promega Corp., Madison, WI, USA. TMD0039, Revised 7/20.

      3. Qiagen, Investigator® 24plex QS Handbook, Qiagen, Hilden, Germany. HB-1860-009, Revised 02/2021.

      4. Promega, Technical Manual – PowerPlex® Y23 System for Use on the Applied Biosystems® Genetic Analyzers, Promega Corp., Madison, WI, USA. TMD035, Revised 4/21.

        • Harder M.
        • Renneberg R.
        • Meyer P.
        • Krause-Kyora B.
        • von Wurmb-Schwark N.
        STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?.
        Croat. Med. J. 2012; 53: 416-422https://doi.org/10.3325/cmj.2012.53.416
        • Lozano-Peral D.
        • Rubio L.
        • Santos I.
        • Gaitán M.J.
        • Viguera E.
        • Martín-de-Las-Heras S.
        DNA degradation in human teeth exposed to thermal stress.
        Sci. Rep. 2021; 11: 12118https://doi.org/10.1038/s41598-021-91505-8
        • Kling D.
        • Egeland T.
        • Tillmar A.
        FamLink – a user friendly software for linkage calculations in family genetics.
        Forensic Sci. Int. Genet. 2012; 6: 616-620https://doi.org/10.1016/j.fsigen.2012.01.012
        • Pilav A.
        • Pojskic N.
        • Ahatovic A.
        • Dzehverovic M.
        • Cakar J.
        • Marjanovic D.
        Allele frequencies of 15 STR loci in Bosnian and Herzegovinian population.
        Croat. Med. J. 2017; 58: 250-256https://doi.org/10.3325/cmj.2017.58.250
        • Pilav A.
        • Pojskic N.
        • Kalajdzic A.
        • Ahatovic A.
        • Dzehverovic M.
        • Cakar J.
        Analysis of forensic genetic parameters of 22 autosomal STR markers (PowerPlex® Fusion System) in a population sample from Bosnia and Herzegovina.
        Ann. Hum. Biol. 2020; 47: 273-283https://doi.org/10.1080/03014460.2020.1740319
        • Ricaut F.X.
        • Keyser-Tracqui C.
        • Crubézy E.
        • Ludes B.
        STR-genotyping from human medieval tooth and bone samples.
        Forensic Sci. Int. 2005; 151: 31-35https://doi.org/10.1016/j.forsciint.2004.07.001
        • Kuhn J.M.M.
        • Jakobsson M.
        • Günther T.
        Estimating genetic kin relationships in prehistoric populations.
        PLoS One. 2018; 13e0195491https://doi.org/10.1371/journal.pone.0195491
        • Di Lorenzo P.
        • Lancioni H.
        • Ceccobelli S.
        • Curcio L.
        • Panella F.
        • Lasagna E.
        Uniparental genetic systems: a male and a female perspective in the domestic cattle origin and evolution.
        Electron. J. Biotechnol. 2016; 23: 69-78https://doi.org/10.1016/j.ejbt.2016.07.001
        • Bugoye F.C.
        • Mulima E.
        • Misinzo G.
        Analysis of mutation rate of 17 Y-chromosome short tandem repeats loci using Tanzanian father-son paired samples.
        Genet. Res. Int. 2018; 2018: 8090469https://doi.org/10.1155/2018/8090469
        • Gaeta R.
        Ancient DNA and paleogenetics: risks and potentiality.
        Pathologica. 2021; 113: 141-146https://doi.org/10.32074/1591-951X-146
        • Semino O.
        • Magri C.
        • Benuzzi G.
        • Lin A.
        • Al-Zahery N.
        • Battaglia V.
        • Maccioni L.
        • Triantaphyllidis C.
        • Shen P.
        • Oefner P.
        • Zhivotovsky L.
        • King R.
        • Torroni A.
        • Cavalli-Sforza L.
        • Underhill P.
        • Santachiara-Benerecetti A.
        Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: inferences on the neolithization of Europe and later migratory events in the mediterranean area.
        Am. J. Hum. Genet. 2004; 74: 1023-1034https://doi.org/10.1086/386295
        • Doğan S.
        • Doğan G.
        • Asic A.
        • Besic L.
        • Klimenta B.
        • Hukic M.
        • Turan Y.
        • Primorac D.
        • Marjanovic D.
        Prediction of the Y-chromosome haplogroups within a recently settled Turkish population in Sarajevo, Bosnia and Herzegovina.
        Coll. Antropol. 2016; 40: 1-7
        • Sehovic E.
        • Zieger M.
        • Spahic L.
        • Marjanovic D.
        • Doğan S.
        A glance of genetic relations in the Balkan populations utilizing network analysis based on in silico assigned Y-DNA haplogroups.
        Anthropol. Rev. 2018; 81: 252-268https://doi.org/10.2478/anre-2018-0021
        • Doğan S.
        • Asic A.
        • Doğan G.
        • Besic L.
        • Marjanovic D.
        Y-chromosome haplogroups in the Bosnian-Herzegovinian population based on 23 Y-STR loci.
        Hum. Biol. 2017; 88: 201-209https://doi.org/10.13110/humanbiology.88.3.0201
        • Babic Jordamovic N.
        • Kojovic T.
        • Doğan S.
        • Besic L.
        • Salihefendic L.
        • Konjhodzic R.
        • Skaro V.
        • Projic P.
        • Hadziavdic V.
        • Asic A.
        • Marjanovic D.
        Haplogroup prediction using Y-chromosomal short tandem repeats in the general population of Bosnia and Herzegovina.
        Front. Genet. 2021; 12671467https://doi.org/10.3389/fgene.2021.671467
        • Halilovic E.
        • Ahmic A.
        • Kalajdzic A.
        • Ismailovic A.
        • Cakar J.
        • Lasic L.
        • Pilav A.
        • Dzehverovic M.
        • Pojskic N.
        Paternal genetic structure of the Bosnian-Herzegovinian Roma: a Y-chromosomal STR study.
        Am. J. Hum. Biol. 2022; 34e23719https://doi.org/10.1002/ajhb.23719